等差数列{an}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9=___.?

发布网友 发布时间:2024-10-22 04:42

我来回答

1个回答

热心网友 时间:2024-11-08 20:50

解题思路:由等差数列的性质可得,a 1+a 4+a 7=3a 4,a 2+a 5+a 8=3a 5,从而可求a 4,a 5,而a 3+a 6+a 9=3a 6,利用等差数列的通项公式可求
由等差数列的性质可得,a1+a4+a7=3a4=36,a2+a5+a8=3a5=33
∴a4=12,a5=11,d=-1
a3+a6+a9=3a6=3(a5-1)=30
故答案为:30
,7,

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com