发布网友 发布时间:2024-10-21 17:21
共1个回答
热心网友 时间:2024-11-20 09:28
一次函数的性质
一次函数y=kx+b (k≠0) k>0,b>0,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限 k<0,b<0,则图象过2,3,4象限当k>0时,y随x的增大而增大;图像经过一、三象限当k<0时,y随x的增大而减小;图像经过二、四象限
二次函数
y=ax^2+bx+c
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减
正比例函数与反比例函数
形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.
图象做法:1.带定系数 2.描点 3.连线
图象是一条直线,一定经过坐标轴的原点
性质:当k>0时,图象经过一,三象限,y随x的增大而增大
当k<0时,图象经过二,四象限,y随x的增大而减小
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交.
性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大.
热心网友 时间:2024-11-20 09:27
一次函数的性质
一次函数y=kx+b (k≠0) k>0,b>0,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限 k<0,b<0,则图象过2,3,4象限当k>0时,y随x的增大而增大;图像经过一、三象限当k<0时,y随x的增大而减小;图像经过二、四象限
二次函数
y=ax^2+bx+c
a>0开口向上
a<0开口向下
a,b同号,对称轴在y轴左侧,反之,再y轴右侧
|x1-x2|=根号下b^2-4ac除以|a|
与y轴交点为(0,c)
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根
b^2-4ac<0,ax^2+bx+c=0无实根
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根
对称轴x=-b/2a
顶点(-b/2a,(4ac-b^2)/4a)
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减
函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减
正比例函数与反比例函数
形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.
图象做法:1.带定系数 2.描点 3.连线
图象是一条直线,一定经过坐标轴的原点
性质:当k>0时,图象经过一,三象限,y随x的增大而增大
当k<0时,图象经过二,四象限,y随x的增大而减小
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交.
性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小,
当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大.