...能表示成ax+by(x,y为非负整数)的最大整数是ab-a-b。

发布网友 发布时间:2024-10-21 17:36

我来回答

1个回答

热心网友 时间:2024-11-15 13:16

a或者b是1的情况下容易证明。
以下情况都是a>1且b>1的情况。
首先证明ab-a-b不能表示成ax+by
假设ab-a-b=ax+by,那么ab=am+bn (m,n都大于等于1)
左边是a的倍数,右边am是a的倍数,那么要求bn也要是a的倍数
b不是a的倍数,只能要求n是a的倍数,这样的话,bn=bn'a>=ba
那么am=ab-bn所以am<=0与m>1矛盾。
接着证明ab-a-b+i能表示成ax+by(i>0)
因为ab互质,最大公约数就是1,根据辗转相减的方法知ma+nb=1,
不妨假设m>0,n<0,于是ab-a-b+i=ab-a-b+i(ma+nb)
因为m>1(m=0意味着nb=1不可能的),所以ab-a-b+i(ma+nb)=(im-1)a+(a+in-1)b
im-1>0,现在只要证明a+in-1>=0,因为ima+inb=i
如果,|in|>ja其中j>0,那么ima=i+|in|b>jab,所以im>jb
所以ima+inb=(im-jb)a-(|in|-ja)b=i,说明|in|>ja时,我们就能调整im,in使得|in|<a
因此|in|<=a-1, 所以a+in-1>=0于是得证

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com