通解和特征向量的关系

发布网友 发布时间:2024-10-23 21:42

我来回答

1个回答

热心网友 时间:2024-11-03 18:41

特征向量与基础解系关系:特征向量是特征值对应齐次方程组的基础解系 。

特征值向量对于矩阵而言的,特征向量有对应的特征值,如果Ax=ax,则x就是对应于特征值a的特征向量。而解向量是对于方程组而言的,就是“方程组的解”,是一个意思。

基础解系是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”。对于空间而言的,空间有它的“基”,就是线性无关的几个向量,然后空间中的任何一个向量都能由“基”的线性组合来表示。

扩展资料:

基础解系和通解的关系

对于一个方程组,有无穷多组的解来说,最基础的,不用乘系数的那组方程的解,如(1,2,3)和(2,4,6)及(3,6,9)以及(4,8,12)......等均符合方程的解,则系数K为1,2,3,4.....等,因此(1,2,3)就为方程组的基础解系。

A是n阶实对称矩阵,假如r(A)=1.则它的特征值为t1=a11+a22+...+ann,t2=t3=...tn=0;对应于t1的特征向量为b1,t2~tn的分别为b2~bn。

此时,Ax=0的解就是k2b2+k3b3+...+knbn;其中ki不全为零。由于:Ax=0Ax=0*B,B为A的特征向量,对应一个特征值的特征向量写成通解的形式是乘上ki并加到一起。这是基础解系和通解的关系。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com