一道七年级几何证明题 急!急!在线等!

发布网友 发布时间:2024-10-23 23:27

我来回答

1个回答

热心网友 时间:2024-10-30 06:16

就是把等边三角形的两条边的一部分换到中间来
延长NC至点E,使CE=BM,连结DE
∵BD=DC
∴∠CBD=∠BCD
而∠CBD+∠BCD+∠BDC=180
又∵∠BDC=120
∴∠CBD=∠BCD=30
又∵△ABC是等边三角形
∴∠ABC=∠ACB=60
∴∠ABC+∠CBD=∠ACB+∠BCD=90
即∠ABD=∠ACD=90
又∵∠ACD+∠DCE=180
∴∠DCE=∠ABD=90
用BD=CD,∠ABD=∠DCE,BM=CE
求出△BDM≌△CDE
∴∠BDM=∠CDE
又∵∠BCD=120,∠MDN=60
∴∠NDE=∠MDN=60
用MD=ED,∠MDN=∠NDE,DN=DN
求出△MDN≌△EDN
∴MN=NE
即MN=CN+BM
C△AMN=AM+AN+MN
=AB+AC
=2

热心网友 时间:2024-10-30 06:12

就是把等边三角形的两条边的一部分换到中间来
延长NC至点E,使CE=BM,连结DE
∵BD=DC
∴∠CBD=∠BCD
而∠CBD+∠BCD+∠BDC=180
又∵∠BDC=120
∴∠CBD=∠BCD=30
又∵△ABC是等边三角形
∴∠ABC=∠ACB=60
∴∠ABC+∠CBD=∠ACB+∠BCD=90
即∠ABD=∠ACD=90
又∵∠ACD+∠DCE=180
∴∠DCE=∠ABD=90
用BD=CD,∠ABD=∠DCE,BM=CE
求出△BDM≌△CDE
∴∠BDM=∠CDE
又∵∠BCD=120,∠MDN=60
∴∠NDE=∠MDN=60
用MD=ED,∠MDN=∠NDE,DN=DN
求出△MDN≌△EDN
∴MN=NE
即MN=CN+BM
C△AMN=AM+AN+MN
=AB+AC
=2

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com