底圆半径相等的两个直交圆柱面

发布网友 发布时间:2022-04-22 08:42

我来回答

1个回答

热心网友 时间:2023-11-06 23:35

面积 = ∫∫dS = ∫∫√[1+(z'x)²+(z'y)²]dxdy
第二个是二重积分,z = f(x,y)是围成立体的上下两个面,就是躺着的圆柱体表面x² + z² = R²的一部分,且在xOy平面上的投影是圆x² + y² = R²
则(z'x)² = x²/(R²-x²),(z'y)² = 0
面积 = ∫∫R/√(R²-x²) dxdy
= ∫(-R,R)dx∫[-√(R²-x²),√(R²-x²)] R/√(R²-x²) dy
= ∫(-R,R) R/√(R²-x²) * 2√(R²-x²) dx
= 4R²

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com