厄米算符的基本内容

发布网友 发布时间:2022-04-22 08:30

我来回答

1个回答

热心网友 时间:2022-06-18 16:15

其中ϕ ψ 、是任意波函数,则称算符F

为厄米算符。
厄米算符具有一些重要的性质:
(1)在任何状态下,厄米算符的本征值必为实数;
(2)在任何状态下平均值为实数的算符必为厄米算符;
(3)厄米算符的属于不同本征值的本征函数彼此正交;
(4) 厄米算符的本征函数具有完备性。 量子体系中的可观测量(力学量)用线性厄米算符来描述是量子力学的一个基本假设,其正确性应该由实验来判定。
量子体系中的力学量用相应的线性厄米算符来描述”具有多方面的含义:
一,算符的线性是状态叠加原理所要求的;
二,实验上的可观测的力学量总是实数,力学量相应的算符必须是厄米算符;实际上,这种要求是有些过分了,即使某个力学量的算符不是厄米算符,只要它的本征值是实数即可,但是这样做的结果会使本征矢变成超完备的,以致不便于使用。
三,量子力学里测量值通常不是唯一确定的值,而是具有一定概率分布的一系列的值,这些测量值的平均值可用
(ψ 已经归一化)来表示;
四,力学量之间的关系也可通过相应算符之间的关系(如对易关系)来反映出来。
基于以上三点,量子力学中的力学量用厄米算符来描述。 我们知道算符的性质可用矩阵来表示,那么厄米算符对应怎样的矩阵
呢?
从厄米算符是定义出发:
但是需要指出的是,以线性厄米算符表示力学量扩充了量子力学中力学量的范围,除了有经典的对应的力学量外,即使经典物理中没有相应的力学量,但只要是线性厄米算符,在微观世界中有意义,诸如宇称、自旋、同位旋等,也都是力学量。 实验上的可观测的物理量都是厄米算符,为了保证算符的厄米性,常常要求波函数满足一定的条件。接下来,下文将在一些文献的基础上,以常见的几种一维算符为例,对此做一些探讨。
量子力学中的常见算符
量子力学中的常见算符有坐标算符、动量算符、能量算符、角动量算符等等,对于宇称算符、自旋算符以及同位旋算符,这里我们不讨论。从这些常见的算符出发,分析它们对波函数的*,再利用厄米算符的一些性质(如两厄米算符之和仍为厄米算符,可対易的两厄米算符之积仍为厄米算符)来研究更广泛的算符,以期得到普遍的结论。
坐标算符
满足厄米算符定义式(1),即对坐标算符来说,算符的厄米性对波函数无附加*。推广到一般的实函

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com