椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0)当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0)其中a^2-c^2=b^2。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于F1F2)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:PF1+PF2=2a(2a>F1F2)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。
椭圆参数方程公式
椭圆的参数方程x=acosθ,y=bsinθ。(一个焦点在极坐标系原点,另一个在θ=0的正方向上)。
r=a(1-e^2)/(1-ecosθ)(e为椭圆的离心率=c/a)
求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解。
x=a×cosβ, y=b×sinβ a为长轴长的一半。
相关性质:
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥曲线(也称圆锥截线)。圆锥的斜截面(不通过底面)为一个椭圆。