您的当前位置:首页正文

初一数学工作总结

2020-08-09 来源:年旅网

  平面直角坐标系

  1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

  2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

  3.原点的坐标是(0,0);

  纵坐标相同的点的连线平行于x轴;

  横坐标相同的点的连线平行于y轴;

  x轴上的点的纵坐标为0,表示为(x,0);

  y轴上的点的横坐标为0,表示为(0,y)。

  4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

  5.几个象限内点的特点:

  第一象限(+,+);第二象限(—,+);

  第三象限(—,—);第四象限(+,—)。

  6.(x,y)关于原点对称的点是(—x,—y);

  (x,y)关于x轴对称的点是(x,—y);

  (x,y)关于y轴对称的点是(—x,y)。

  7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

  点P(x,y)到y轴的距离是︱x︳。

  8.在第一、三象限角平分线上的点的坐标是(m,m);

  在第二、四象限叫平分线上的点的坐标是(m,—m)。

  不等式与不等式组

  (1)不等式

  用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

  (2)不等式的性质

  ①对称性;

  ②传递性;

  ③加法单调性,即同向不等式可加性;

  ④乘法单调性;

  ⑤同向正值不等式可乘性;

  ⑥正值不等式可乘方;

  ⑦正值不等式可开方;

  (3)一元一次不等式

  用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

  (4)一元一次不等式组

  一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

  点、线、面、体知识点

  1.几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  2.点动成线,线动成面,面动成体。

  点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示。

  一条射线可以用端点和射线上另一点来表示。

  一条线段可用它的端点的两个大写字母来表示。

  注意:

  (1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

  (2)直线和射线无长度,线段有长度。

  (3)直线无端点,射线有一个端点,线段有两个端点。

  (4)点和直线的位置关系有线面两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  角的种类

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)。

因篇幅问题不能全部显示,请点此查看更多更全内容