您的当前位置:首页正文

一次函数应用题精选之欧阳家百创编

2021-02-23 来源:年旅网
欧阳家百创编

一次函数应用题精选

欧阳家百(2021.03.07)

1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示: (1)月通话为100分钟时,应交话费元; (2)当x≥100时,求y与x之间的函数关系式;

(3)月通话为280分钟时,应交话费多少元?

60 40 20 100

200

x(分钟)

y(元) 2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:

()

分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)

()

当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;

()

在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

欧阳家百创编

欧阳家百创编

12 s(千甲 CD3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y6 E乙 图象与信息y/cm B30 25 20 10 O 甲 (cm)与燃烧时间x(h)的关系如图所示.请根据图象所提供的信息解答下O1 2 3 F乙t( 时1 2 2.5 3 x/h 列问题: (1)甲、乙两根蜡烛燃烧前的高度分别是,

从点燃到燃尽所用的时间分别是;

(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式; (3)当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等? 4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:

销售渠道 省城批发 本地零售 每日销量 (吨) 4 1 每吨所获纯 利润(元) 1200 2000 受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.

(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;

(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.

欧阳家百创编

欧阳家百创编

5、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表: (1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大?

成本(万元/套) 售价(万元/套) A 25 30 B 28 34 (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?

7、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如下表:

甲店 乙店 A种水果/箱 11元 9元 B种水果/箱 17元 13元 有两种配货方案(整箱配货):

方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;

方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店箱,乙店箱;B种水果甲店箱,乙店箱.

(1)如果按照方案一配货,请你计算出经销商能盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?

欧阳家百创编

欧阳家百创编

(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?

9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排

x名工人进行蔬菜精加工.

(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;

(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w元,求w与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?

10、小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间

x(小时)的函数图象如图所示.

(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时.

(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到y(千乙地停止,途中小李与小张共相遇3次.请在图中画出小李距甲米)

60 50 地的路程y(千米)与时间x 40 30 (小时)的函数的大致图象.

20 欧阳家百创编

10 O 1 2 3 4 5 6 x(时)

欧阳家百创编

()

小王与小张同时出发,按相同路线前往乙地,

距甲地的路程y(千米)与时间x(小时)的函数关系式 为y12x10.小王与小张在途中共相遇几次? 请你计算第一次相遇的时间.

12、我市某乡A,B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A,B两村运往两仓库的柑桔运输费用分别为yA元和yB元.

(1)请填写下表,并求出yA,yB与x之间的函数关系式;

运 收 地 A 地 B 总计 C x吨 240吨 D 260吨 总计 200吨 300吨 500吨 (2)试讨论A,B两村中,哪个村的运费较少;

(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.

13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:

(1)乙队开挖到30米时,用了小时.开挖6小时时,甲队比乙队多挖了米; (2)请你求出:

欧阳家百创编

y(米) 60 50 30 甲 乙

欧阳家百创编

①甲队在0≤x≤6的时段内,y与x之间的函数关系式; ②乙队在2≤x≤6的时段内,y与x之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队? (3)如果甲队施工速度不变,乙队在开挖6小时后,

施工速度增加到12米/时,结果两队同时完成了任务. 问甲队从开挖到完工所挖河渠的长度为多少米?

15、如图,分别表示A步行与B骑车在同一路上行

22 驶的路程S与时间t的关系。 (1)B出发时与A相距千米。

10 (2)走了一段路后,自行车发生故障,进行修理,所用7.5 的时间是小时。(1分)

(3)B出发后小时与A相遇。 0 0.5 1.5 (4)若B的自行车不发生故障,保持出发时的速度前进,

小时与A相遇,相遇点离B的出发点千米。在图中表示出这个相遇点C。

(5)求出A行走的路程S与时间t的函数关系式。

16、2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛

A路程/千米4035lA,lBS(千 lB lA 3 tCB时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.

(1)哪个队先到达终点?乙队何时追上甲队?

201600.511.522.5时间/时(2)在比赛过程中,甲、乙两队何时相距最远?

17、刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时

欧阳家百创编

欧阳家百创编

再往A镇参加救灾。一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。

⑴若二分队在营地不休息,问二分队几小时能赶到A镇?

⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?

⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。

18、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y

(千米)、y

(千

米)与时间x(小时)之间的函数关系对

应的图像.请根据图像所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了小时;

(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的

汽车在排除故障时,距出发点的路程是多少千米?

(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后

欧阳家百创编

欧阳家百创编

两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.

19、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),A 900 y/km D 图中的折线表示y与x之间的函数关系. 根据图象进行以下探究: 信息读取

(1)甲、乙两地之间的距离为km; (2)请解释图中点B的实际意义; 图象理解

(3)求慢车和快车的速度;

O C B 4 (第19题)

12 x/h (4)求线段BC所表示的y与x之间的函数关系式,并写出自变量

x的取值范围;

问题解决

(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

21、抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库。已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨。从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)

欧阳家百创编

欧阳家百创编

(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式

y(万元) 1.2 y1 B y2=0.005x+0.3 (2)当甲、乙两库各运往A、B两库0.3 0.2 多少吨粮食时,总运费最省,最省的总运0 20 费是多少?

24、某住宅小区计划购买并种植500株树苗,某树苗公司提供如下信息:

信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量 相等. 信息二:如下表:

树苗 杨树 丁香树 柳树 设购买杨树、柳树每棵树苗批发价格(元) 3 2 3 两年后每棵树苗对空气的净化指数 0.4 0.1 0.2 分别为x株、y株.

(1) 用含x的代数式表示y;

(2)若购买这三种树苗的总费用为w元,要使这500株树苗两年后对该住宅小区的空气净化指数之和不低于120,试求w的取值范围. 25、通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(0x30)存在下列关系:

x(元/千克) 5 10 15 20 y(千克) 4500 4000 3500 3000 又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:z400x(0x30).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场

欧阳家百创编

x(台)

欧阳家百创编

处于平衡状态.

(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;

(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?

(3)如果该地区农民对这种农副产品进行精加工,此时生产数量

z与市场价格x的函数关系发生改变,而需求数量y与市场价格x的

函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?

26.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.

(1)今年三月份甲种电脑每台售价多少元?

(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?

(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?

25.(2009年咸宁市)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每

欧阳家百创编

欧阳家百创编

个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.

(1)求a的值;

(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数; (3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小y/人 y/人 y/人 300 时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能4 240 3 随到随购,请你帮助计算,至少需同时开放几个售票窗口? a 78 x/分 O O 1 x/分 (图②) (图③) 1、一次时装表演会预算中票价定位每张100元,容纳观众人数不

O 1 x/分 (图①)

超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;

⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?

欧阳家百创编

欧阳家百创编

(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)

2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:

通过电流强度(单位:A) 1 1.7 1.9 2.1 2.4 氧化铁回收率(%) 75 79 88 87 78

如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.

(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该 图中坐标轴的交点代表点(1,70))

(2) 用线段将题(1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;

(3) 利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A).

3、如图(1),在矩形ABCD中,AB = 10cm,BC = 8cm. 点P从A点出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q同时出

欧阳家百创编

欧阳家百创编

发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm. 图(2)是点P出发x秒后△APD的面积(cm2)与x(秒)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积(cm2)与x(秒)的函数关系图象.

(1)参照图(2),求a、 b及图(2)中c的值; (2)求d的值;

(3)设点P离开点A的路程为(cm),点Q到点A还需要走的路程为(cm),请分别写出改变速度后、与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值;

(4)当点Q出发_________秒时,点P、点Q在运动路线上相距的路程为25cm.

4、教室里放有一台饮水机,饮水机上有两个放水管。课间同学们到饮水机前用茶杯接水。假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。两个放水管同时打开时,它们的流量相同。放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。饮水机的存水量y(升)与放水时间x(分钟)的函数关系如下图所示:

⑴求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;

欧阳家百创编

欧阳家百创编

⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟?

⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?

5、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:

价格(万元/台)

A型 B型 12 10

1

处理污水量(吨/月) 240 200 年消耗费(万元/台) 1

经预算,该企业购买设备的资金不高于105万元。

(1)求购买设备的资金y万元与购买A型x台的函数关系,并设计该企业有几种购买方案;

(2)若企业每月产生的污水量为2040吨,利用函数的知识说明,应选择哪种购买方案;

(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)

欧阳家百创编

欧阳家百创编

6、某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.

(l)根据下表提供的数据,求y与x的函数关系式;当水价为每吨10元时,l吨水生产出的饮料所获的利润是多少?

1吨水价格x(元) 4 6 用1吨水生产的饮料所获利润y(元) 200 198

(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.已知该厂日用水量不少于20吨,设该厂日用水量为t吨,当日所获利润为W元.求W与t的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.

7、我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A、B、C三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的重量不超过装运的A、C两种水果重量之和.

(1) 设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并写出自变量的取值范围.

水果品种

A B C

每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元) 6 8 5

(2) 设此次外销活动的利润为Q(万元),求Q与x之间的函数

欧阳家百创编

欧阳家百创编

关系式,请你提出一个获得最大利润时的车辆分配方案.

8、A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.

(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.

(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.

欧阳家百创编

因篇幅问题不能全部显示,请点此查看更多更全内容