您的当前位置:首页正文

基于金纳米粒子的新型电化学适体生物传感器信号放大检测癌胚抗原

2023-04-14 来源:年旅网
ElectrochemistryCommunications37(2013)15–19

ContentslistsavailableatScienceDirect

ElectrochemistryCommunications

journalhomepage:www.elsevier.com/locate/elecom

Shortcommunication

Novelelectrochemicalaptamerbiosensorbasedongoldnanoparticlessignalamplificationforthedetectionofcarcinoembryonicantigen

HuaweiShu,WeiWen,HuayuXiong,XiuhuaZhang,ShengfuWang⁎

HubeiCollaborativeInnovationCenterforAdvancedOrganicChemicalMaterials,MinistryofEducationKeyLaboratoryfortheSynthesisandApplicationofOrganicFunctionalMolecules&CollegeofChemistryandChemicalEngineering,HubeiUniversity,Wuhan430062,PRChina

articleinfoabstract

Anovelelectrochemicalaptamerbiosensorwasdesignedbasedonthesignalamplificationofgoldnanoparticles(AuNPs)forthedetectionofatumorbiomarker,carcinoembryonicantigen(CEA).TheelectrochemicalbiosensorwasconstructedbysandwichingtheCEAbetweenanAuelectrodemodifiedwiththiol-terminatedCEAaptamer-1(Apt1)andtheAuNPswiththiol-terminatedCEAaptamer-2(Apt2)and6-ferrocenylhexanethiol(Fc).Amper-ometricdetectionofFcbydifferentialpulsevoltammetry(DPV)ontheelectrochemicalbiosensorwasusedtoquantifytheconcentrationofCEA.Thebiosensorprovidedalinearrangefrom1to200ng/mLforCEAwithade-tectionlimitof0.5ng/mL.ItsperformancewassuccessfullyevaluatedwithhumanserumspikedwithCEA,indi-catingthattheaptasensorhasgreatpotentialforpracticalapplication.Inaddition,theelectrochemicalbiosensorexhibitedexcellentselectivityresponsesandgoodstabilitytowardthetargetanalyte.

©2013ElsevierB.V.Allrightsreserved.

Articlehistory:

Received15August2013

Receivedinrevisedform7September2013Accepted17September2013Availableonline5October2013Keywords:

CarcinoembryonicantigenAptamer

ElectrochemicalbiosensorGoldnanoparticles

1.Introduction

Carcinoembryonicantigen(CEA)isa180kDahighlyglycosylatedproteinover-expressedonbreast,colonandothercancercells[1].Argu-ably,itisthebeststudiedtumorepitopeandpresentonthelargestnum-beroftumors.These,andotherconditions,leadtoanincreaseinbloodCEA.Hence,clinically,serumCEAlevelsmaybeindicative(butnotdiag-nostic)ofthereturnofactivemetastaticdisease[2].Theusualtechniqueusedforthedeterminationoftumormarkersisimmunoassay.Immuno-assays,includingradioimmunoassays[3],enzymeimmunoassays[4],fluoroimmunoassays[5],andpiezoelectricimmunosensors[6],haveal-readybeenreportedforCEA.Butaptamers(Apts)havemanyadvantagesoverantibodiesintermsofrepeatablesynthesis,easymodification,long-termstability,lessimmunogenicityetc.,andareincreasinglyusedinbioanalysisandbiotechnology[7,8].

Aptsaresingle-strandedDNAorRNAmolecules.Theyhavebeense-lectedbySELEX(systematicevolutionofligandsbyexponentialenrich-ment)technologyfromacombinatoriallibrarybytheircapabilitytobindaspecifictargetsuchasanucleicacid,proteinortumorcell[9–11].Therearetwomainapproachestoconstructingelectrochemicalaptasensors.Thefirstmakesuseofthefactthataptamerscanreadilyundergosite-specificmodificationduringchemicalorenzymaticsyn-thesistoincorporateparticularreporters,linkers,orothermoieties.Al-ternatively,aptamersecondarystructurescanbeengineeredtoundergoanalyte-dependentconformationalchanges.This,combinedwiththe

⁎Correspondingauthor.Tel.:+862750865309;fax:+862788663043.E-mailaddress:wangsf@hubu.edu.cn(S.Wang).1388-2481/$–seefrontmatter©2013ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.elecom.2013.09.018

abilitytospecificallyplacechemicalagents,opensupawealthofpossi-blesignaltransductionschemas[12].Electrochemicalapproachesusingaptamersinanalyticalapplicationshavebecomeincreasinglypopularoverthepasttwodecades[13,14]becauseelectrochemicaltechniqueshavehighsensitivities,easyoperationandlowcost,andaresuitableforminiaturization.

Sofar,CEAAptshavebeenreported[15].However,CEAusuallybindstoonecopyofApt.Inthiswork,wereportanovelvoltammetricassayusingFccappedAuNPs–Apt2conjugatesfortheanalysisofCEAandApt1intheformofsandwichcomplexes.BecausetwodifferentAptsareusedsimultaneouslyforCEAidentification,theidentificationaccuracyishigherthanwithasingleaptamer,resultinginalowback-groundsignalandgoodselectivity.2.Experimentalsections2.1.Reagentsandapparatus

Hydrogentetrachloroaurate(III)trihydrate(HAuCl4·3H2O),tri-sodiumcitrate,6-ferrocenylhexanethiol(Fc),CEAfromhumanfluids(≥95%,SDS-PAGE),humanserumand6-mercapto-1-hexanol(MCH),tris(2-carboxyethy)phosphinehydrochloride(TCEP)werepurchasedfromSigma-Aldrich(USA).Allotherreagentswereofanalyticalgrade.OligonucleotidesweresynthesizedandpurifiedbySangon(Shanghai,China).Thesequencesoftheseoligonucleotidesusedinthisworkarelistedasfollows:

Apt1:3′-SH-ATACCAGCTTATTCAATT-5′;Apt2:3′-SH-AGGGGGTGAAGGGATACCC-5′.

16H.Shuetal./ElectrochemistryCommunications37(2013)15–19

TheelectrochemicalmeasurementswerecarriedoutonaCHI660Celectrochemicalworkingstation(CHInstruments,Inc.Shanghai)usingathree-electrodesystem.2.2.PreparationofAuNPs

AuNPswerepreparedaccordingtothemethodreportedpreviously[16].2.7mLof1%trisodiumcitratewasaddedto100mLofboiling0.01%HAuCl4solutionandstirredfor10minattheboilingpoint.ThepreparedcolloidAuNPswerestoredinbrownglassbottlesat4°C.ThefinalAuNPshadanaveragediameterofapproximately13nmasmeasuredbyaTransmissionElectronMicroscope(TEM)asshowninFig.1A.2.3.PreparationofFccappedAuNPs–Apt2conjugates

ThemodificationofAuNPswithFcandApt2waspreparedaccordingtothemethodreportedbyJ.Wangetal.[17].A500μLcolloidgoldsolu-tionwasmixedwith100μLofhexanecontaining5.0mMFcand200μLApt2for24honavortexstirrer.TheresultantmodifiedAuNPsremainedintheaqueousphase.Thesolutionwascentrifuged,andthehexanephasecontainingFcwasdecanted.TheAuNPscappedwithFcandApt2werethoroughlyrinsedwith500μLhexane,resuspendedin500μLof0.1mol/Lphosphatebufferedsaline(PBS,pH7.0).Followingcentrifugationofthemixturetoremovethesupernatant,theresultingFccappedAuNPswerewashedandredispersedin500μLPBSandstoredat4°Cforfurtheruse.

2.4.FabricationofthebiosensorandtheelectrochemicaldetectionThebareAuelectrodewaspolishedwith0.05mmaluminaslurriesandultrasonicallycleanedinethanolandultrapurewatertwicefor5min.TheAuelectrodeswerethenputin5%H2SO4solutionandscannedfrom0to1.6Vtomeasurethecyclicvoltammetry(CV)signalsuntilastandardcyclicvoltammetricpeakappeared.AfterwashingwithultrapurewateranddryingwithastreamofN2,thepre-cleanedAuelectrodewasincubatedfor1hatroomtemperaturein50μLof1μMApt1including10μLof5μMTCEPandwashedwithultrapurewater.Thentheelectrodewasimmersedin50μLof1mMMCHfor1htoobtainawell-alignedDNAmonolayer.Next,thiselectrodewasimmersedin50μLCEAsolution(solutionin0.1MPBS,pH7.4)for30min,rinsedwithPBStoremovethenonspecificallyboundCEA,andwasthenimme-diatelysoakedin50μLFccappedAuNPs–Apt2conjugatesforanother30min.TheelectrodeabovewasincontactwithPBSandscannedfrom0to0.6VtomeasuretheDPVsignals.Thewholepreparationpro-cessisoutlinedinFig.2.3.Resultsanddiscussion

3.1.Characterizationofbiosensorfabrication

Electrochemicalimpedancespectroscopy(EIS)andCVmeasure-mentswereusedtocharacterizetheelectrochemicalbiosensor[18].InthetermsofEIS,[Fe(CN)6]3−/[Fe(CN)6]4−wasutilizedastheredoxprobeandthesemicirclediameterwasequaltoelectron-transfer

A

18000160001400012000100008000600040002000

0

0

Babcd1000020000300004000050000

6420-2-4-6-8

Cad0.160.140.120.100.080.060.040.020.00

D

0.00.10.20.30.40.50.64:12:14:31:12:3

Potential / V

−/4−Fig.1.CharacteristicsofAuNPsTEM(A)andEIS(B)andCV(C)in0.5mMFe(CN)3atbareAu(a),Apt1/Au(b),CEA/Apt1/Au(c)andFc–AuNPs–Apt2/CEA/Apt1/Au(d)electrodes.Op-6timizationofexperimentalconditionforDPVresponsetothedifferentvolumeproportionsofAuNPsmodifiedFc(5mM)andApt2(1μM)(D).

H.Shuetal./ElectrochemistryCommunications37(2013)15–1917

HSMCHAu0.400.350.30

a

Current/uA0.250.200.150.100.05

b

ab0.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Potential/V

SHAU NPsAU NPsSHCEAMCHSHSHSHSH-CEA aptamer-1SH-CEA aptamer-26-ferrocenylhexanethiolFig.2.SchematicdiagramabouttheelectrochemicalaptamerbiosensorbasedonAuNPssignalamplificationforthedetectionofCEA.

−/4−resistance.In0.5mMFe(CN)3,bareelectrodeexhibitedalmosta6straightline(Fig.1B,curvea),whichwascharacteristicofamassdiffu-sionlimitingstepoftheelectron-transferprocess.WhentheApt1wasself-assembledontothebareelectrodeviaAu\\Sbinding,theRetin-creased(Fig.1B,curveb),thiswasbecausethatthenegativelychargedphosphatebackboneoftheoligonucleotidesproducedanelectrostaticrepulsionforceto[Fe(CN)6]3−/[Fe(CN)6]4−.Itisalsofoundthattheas-semblyofCEAontheApt1modifiedelectrodeleadstoasignificantincreaseinRet(Fig.1B,curvec).AfterhybridizationwithApt2–AuNPs–Fc,thereisalargeincreaseinRet(Fig.1B,curved),implyingthattheintroductionofApt2–AuNPs–Fcgreatlyinhibitstheelectrontransferoftheredoxprobeontheelectrodesurface[19].TheseresultswereinagoodagreementwiththoseobtainedfromCVmeasurements(Fig.1C).Astheabovefigureshows,bothresultsofEISandCVdemon-stratethatthesensinginterfacehasbeenfabricatedsuccessfully.

3.3.Optimizationofincubationtime

ItwasfoundthatchangingtheincubationtimeoftheApt1modifiedelectrode(Fig.3B,curvea)andApt2–AuNPs–Fc(Fig.3B,curveb)inCEAsolution(50ng/mL)causedavisibledifferenceintheincreaseofpeakcurrent.Therefore,thedependenceofCEAincubationtimeonthein-creaseofthepeakcurrentwasstudiedtodeterminetheoptimumincu-bationtimeofCEA.AsshowninFig.3B,thecurrentresponseincreasedwiththeincreaseofincubationtimeandalmostleveledoffafter30min,whenthebuildingoftheApt1–CEA–Apt2–AuNPs–Fccomplexreachedsaturation.Therefore,30minwaschosenastheincubationtimeforthedetectionofCEA.3.4.Performanceofaptasensor

3.4.1.Calibrationcurveofaptasensor

TheaptasensorswereincubatedindifferentconcentrationsofCEAundertheoptimalconditionsandtheDPVresponsesoftheproposedaptasensorwererecorded.AsseeninFig.3C,whichdisplaysthecorre-spondingcalibrationplots,thecurrentwasproportionaltoCEAconcen-trationovertherangefrom1to200ng/mL.Thelimitofdetectionwas0.5ng/mL(S/N=3).ThelinearequationcouldbefittedasI(A)=1.68E−8+0.9373c(g/mL)(R=0.9978),whichislowerthanthede-tectionlimitof1.1ng/mL[20]obtainedusingimmunosensors.3.4.2.Specificity

ThespecificityoftheproposedaptasensorwasalsoexaminedbydetectingtheDPVchangeinthepresenceofCEAandthreeinterferingagents:myoglobin(MYO),mucoprotein(MUC),andbovineserumal-bumin(BSA).TheexperimentalresultsareshowninFig.3D:CEA(100ng/mL)producedamuchstrongercurrentresponse,whiletheotherinterferingagents(1μg/mL)causedalmostnegligibleelectro-chemicalchanges.

3.2.Optimizationofexperimentalconditions

AsshowninFig.1D,whentheratiowaslessthanthebestpropor-tion,becausetheamountofFcwasless,theDPVsignalwasrelativelylow;whentheratiowasgreaterthanthebest,becausethequantityofApt2wasless,affectingtheamountofAuNPscompoundscombinedwiththeCEA,thereisadecreaseintheelectrochemicalsignal.There-fore,theoptimizedvolumeproportionofAuNPsmodifiedFc(5mM)andApt2(1μM)wasdeterminedtobe1:2.

IntheoptimizedvolumeproportionofAuNPsmodifiedFc(5mM)andApt2(1μM),thedosageoftheApt2determinedtheefficiencywithwhichtheApt2bindstoCEA,andwouldaffecttheelectrochemicalsignal.AsshowninFig.3A,withanincreaseintheamountofApt2,thesignalintensitygraduallyincreasedandthenwasnearlybalancedwhentheamountofApt2was200μL.Therefore,theoptimaldosageoftheApt2was200μL.

18H.Shuetal./ElectrochemistryCommunications37(2013)15–19

0.070.120.100.080.06A0.060.050.040.03B

ab0.040.020.020.010.000.00501001502002503000102030405060VCEA-apt 2/µL 0.25Time/min0.200.160.120.080.040.000.0R=0.997840.200.150.100.050.00y=1.68E-8+0.9373x200ngC0.16D

1ng0.120501001502000.080.040.000.10.20.30.40.50.6CEAMYOMUCBSAFig.3.OptimizationofexperimentalconditionforDPVresponseto1μMApt2ofdifferentvolumes(A)andDPVpeakcurrentsplottedagainstincubationtimeoftheApt1modifiedelec-trode(a)andApt2–AuNPs–Fccompounds(b)inCEA(50ng/mL)solutionat37°C(B).DPVof1,5,10,25,50,75,100,150,and200ngCEAinthe0.1MPBS(pH7.0).Insert:linearrela-tionshipbetweentheincreasepeakcurrentandtheconcentrationofCEA.Theselectivityoftheaptasensor:CEA(100ng/mL),MYO(1μg/mL),MUC(1μg/mL),BSA(1μg/mL)(D).

3.5.Analyticalapplicationoftheproposedaptasensor

Toevaluatetheapplicabilityoftheproposedaptasensor,theconcen-trationofCEAinhumanbloodserumsamplewasdeterminedbythestandardadditionmethod.Inthistest,30μLoforiginalhumanserumwasdilutedto3.0mLwithPBS.ThendifferentamountsofCEA(100,120,140ng)wereaddedin1mLdilutedhumanserumsamplestopre-parethreeserumspecimenscontainingCEA.Eachsamplewasdetectedthreetimes.Thedetectionvaluewastheaverageofthreeresults.TheanalyticalresultsareshowninTable1.Therecoverywasintherange95.6–101.0%,indicatingthattheaptasensorhadgoodaccuracyandhadgreatpotentialfortheanalysisofCEAinrealclinicalsamples.4.Conclusion

Insummary,anovelelectrochemicalaptasensorforthedetectionofCEAhasbeendeveloped.Unlikemostexistingelectrochemicalaptasensors,twodifferentAptswereusedsimultaneouslyforCEAiden-tificationbyusingApt2–AuNPs–FcconjugatesfortheanalysisofCEA

andApt1intheformofsandwichcomplexes.Thisproducedbetteriden-tificationaccuracythanwhenusingasingleaptamer,resultinginalowbackgroundsignalandgoodselectivity.Thiselectrochemicalaptasensorwaseasytoproduce,andmightprovepromisingforapplicationsinbi-ologicalorclinicaltargetanalysis.Acknowledgments

ThisworkwassupportedbytheNationalNaturalScienceFounda-tionofChina(No.21175032)andtheNaturalScienceFundforCreativeResearchGroupsofHubeiProvinceofChina(No.2011CDA111).References

[1]V.Kulasingam,E.P.Diamindis,Nat.Clin.Pract.Oncol.5(2008)588–599.

[2]L.Gold,D.Brown,Y.He,T.Shtatland,B.S.Singer,Y.Wu,PNAS94(1997)59–64.[3]M.Szturmowicz,W.Tomkowski,A.Fijalkowska,A.Sakowicz,S.Filipecki,Eur.J.Can-cer31(1995)S264.

[4]A.M.Delarosa,M.Kumakura,Anal.Chim.Acta312(1995)85–94.

[5]J.L.Yuan,G.L.Wang,K.Majima,K.Matsumoto,Anal.Chem.73(2001)1869–1876.[6]B.Zhang,X.Zhang,H.H.Yan,S.J.Xu,D.H.Tang,W.L.Fu,Biosens.Bioelectron.23

(2007)19–25.

[7]S.D.Jayasena,Clin.Chem.45(1999)1628–1650.[8]R.R.Breaker,Nature432(2004)838–845.

[9]J.M.Nam,S.J.Park,C.A.Mirkin,J.Am.Chem.Soc.124(2002)3820–3821.[10]J.M.Nam,C.S.Thaxton,C.A.Mirkin,Science31(2003)1884–1886.

[11]J.M.Nam,S.I.Stoeva,C.A.Mirkin,J.Am.Chem.Soc.126(2004)5932–5933.[12]E.J.Cho,J.W.Lee,A.D.Ellington,Annu.Rev.Anal.Chem.2(2009)241.[13]E.Palecek,M.Bartosik,Chem.Rev.112(2012)3427.

[14]S.Tombelli,M.Mascini,Curr.Opin.Mol.Ther.11(2009)179.

[15]C.L.Smith,USPat.Appl.Publ.,US2010/0254901A1,Oct.7,2010.

Table1

DeterminationsofCEAinhumanserumsamples.Samples123

Added(ng/mL)100.0120.0140.0

Found(ng/mL)95.6117.8141.4

Recovery(%)95.698.2101.0

RSD(%)4.91.73.1

H.Shuetal./ElectrochemistryCommunications37(2013)15–19

[16]H.Fan,Y.Xu,Z.Chang,R.Xing,Q.J.Wang,P.G.He,Y.Z.Fang,Biosens.Bioelectron.26

(2011)2655–2659.

[17]J.Wang,J.Li,A.J.Baca,J.Hu,F.Zhou,W.Yan,D.W.Pang,Anal.Chem.75(2003)3941.

[18]J.Zhang,Y.Q.Wang,R.H.Lv,L.Xu,Electrochim.Acta55(2010)4039–4044.[19]S.S.Zhang,J.P.Xia,X.M.Li,Anal.Chem.80(2008)8382–8388.[20]X.Zhang,Y.Wu,Y.Tu,S.Liu,Analyst133(2008)485–492.

19

因篇幅问题不能全部显示,请点此查看更多更全内容