您的当前位置:首页正文

2009年宁夏中考数学试卷及答案

2024-04-17 来源:年旅网
宁夏回族自治区2009年初中毕业暨高中阶段招生数 学 试 题

一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列运算正确的是( )

3412A.a·aa B.(6a)(2a)3aC.(a2)a4 D.2a3aa

623222.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为( )

A.25(1x)64 B.25(1x)64 C.64(1x)25 D.64(1x)25 3.把不等式组

22222x11的解集表示在数轴上,下列选项正确的是( )

x2≤31 1 1 0 0 0

A. B. C. D.

4.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..

0

的是( )

A.众数是85 B.平均数是85 C.中位数是80 D.极差是15 5.一次函数y2x3的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A.24π B.32π C.36π D.48π

6 6

4 4 4

俯视图 主视图 左视图

(7题图)

(6题图)

7.在44的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )

A.1个 B.2个 C.3个 D.4个 y 8.二次函数yaxbxc(a0)的图象如图所示,对称轴是直线x1,则下列四个结论错误的是( ) ..

A.c0 B.2ab0C.b4ac0 D.abc0 二、填空题(每小题3分,共24分) 9.分解因式:mmn .

10.在Rt△ABC中,C90°,AB3,BC2,则cosA的值是 .

32221

1 O 1 x (8题图)

11.已知:ab3,ab1,化简(a2)(b2)的结果是 . 212.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为 元.

13.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为 .

14.如图,梯形ABCD的两条对角线交于点E,图中面积相等的三角形共有 对.

C A

A D

E O B C C B A B D

(14题图) (16题图) (15 BC于D15.如图,△ABC的周长为32,且AB,△ACD的周长为24,题图)AC,AD那么AD的长为 .

16.如图,⊙O是边长为2的等边三角形ABC的内切圆,则图中阴影部分的面积为 .

三、解答题(共24分)

117.(6分)计算:12(2009)31.

201

18.(6分)解分式方程:

19.(6分)已知正比例函数yk1x(k10)与反比例函数y两点,点A的坐标为(2,1).

(1)求正比例函数、反比例函数的表达式; (2)求点B的坐标. 20.(6分)桌子上放有质地均匀,反面相同的4张卡片.正面分别标有数字1、2、3、4,

1x2. x33xk2(k20)的图象交于A、Bx将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?

四、解答题(48分) 21.(6分)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.

(1)参加展销的D型号轿车有多少辆? (2)请你将图2的统计图补充完整;

(3)通过计算说明,哪一种型号的轿车销售情况最好?

(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率. 已售出轿车/辆 各型号参展轿车数的百分比

200 168 130 A 150 98 35% 100 D

B

50 C 20%

0 20%

A B C D 型号

(图1) (图2) 22.(6分)如图:在Rt△ABC中,ACB90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得四边形ABCE. E

C

求证:EC∥AB. B A D 23.(8分)已知:如图,AB为⊙O的直径,ABAC,BC交⊙O于点D,AC交⊙O于点E,BAC45°. (1)求EBC的度数; (2)求证:BDCD. A y

C O

E

A O

C

D B B 24.(8分)如图,抛物线y122xx2与x轴交于A、B两点,与y轴交于C点. 22(1)求A、B、C三点的坐标;

(2)证明△ABC为直角三角形; (3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形,若存在,请求出点P的坐标,若不存在,请说明理由. 25.(10分)如图1、图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持APAP,BPBP).通过向下踩踏点A到A(与地面接触点)使点B上升到点B,与此同时传动杆BH运动到BH的位置,点H绕固定点D旋转(DH为旋转半径)至点H,从而使桶盖打开一个张角HDH.

如图3,桶盖打开后,传动杆HB所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设HC=BM.测得AP6cm,PB12cm,DH8cm.要使桶盖张开的角度HDH不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)

(参考数据:2≈1.41,3≈1.73)

H′

H D

H C H′ D

B′

A

(图1)

A′ P (图2)

B A A′ P B′ M B (图3)

26.(10分)已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.

(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面

积;

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形

MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

Q

C

P B

A M N

宁夏回族自治区2009年初中毕业暨高中阶段招生

数学试卷参考答案

一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 题号 答案 题号 答案 1 D 9 2 A 10 3 B 11 2 4 C 12 120 5 B 13 6 A 14 3 7 C 15 8 9 D 16 二、填空题(每小题3分,共24分) m(mn)(mn) 5 342 13π 3三、解答题(共24分) 17.(6分)计算:

解:原式=231231 ·········································································· 4分 =33 ·········································································································· 6分 18.(6分)解分式方程:

解:去分母得:1x2(x3) ········································································ 3分 整理方程得:3x7

x7 ·········································································································· 5分 37是原方程的解. 3经检验x原方程的解为x19.(6分)

7. ················································································· 6分 31)分别代入yk1x与y解:(1)把点A(2,k2得 xk11,k22. ·························································································· 2分 2正比例函数、反比例函数的表达式为:y12x,y. ··································· 3分 2xy(2)由方程组y1xx12x222得,.

y1y1212xB点坐标是(2,1). ·················································································· 6分

20.(6分) 解:列表:

个位数 十位数 1 2 3 4

树状图: 1

1 11 21 31 41 2 12 22 32 42 3 13 23 33 43 4 14 24 34 44 开始 2

3

4

············································· 3分

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

能被3整除的两位数的概率是

四、解答题(共48分) 21(6分)

5. ································································ 6分 16解:(1)100025%250(辆) ···································································· 1分 (2)如图,(100020%50%100) ····· ······ 2分

销售轿车辆数 (3)四种型号轿车的成交率:

200 168 130 150 98 100 100 50 0 168A:100%48%35098B:100%49% 200130C:50% D:100%52%

250D种型号的轿车销售情况最好. ······················· 4分

(4)

16816821.

1689810013049662抽到A型号轿车发票的概率为

22.(6分)

21. ······························································· 6分 62CD是AB边上的中线,且ACB90°,

CDAD.

CADACD. ····················································································· 2分 又△ACE是由△ADC沿AC边所在的直线折叠而成的, ECAACD. ······················································································ 4分 ECACAD. ······················································································ 5分 EC∥AB. ······························································································ 6分

证明:23.(8分) (1)解:

A AB是⊙O的直径, AEB90°.

O 又BAC45°, ABE45°. E 又ABAC,

C ABCC67.5°. D B EBC22.5°. ······················································································· 4分 (2)证明:连结AD. AB是⊙O的直径, ADB90°. ADBC. 又ABAC, BDCD. ······························································································ 8分

24.(8分) 解:(1)

抛物线y122xx2与x轴交于A、B两点, 2212x2x20.

22即x2x40.

2解之得:x12,x222.

0)B22,0)点A、B的坐标为A(2,、(. ······················································ 2分

将x0代入y122xx2,得C点的坐标为(0,2) ······························· 3分 22(2)

AC6,BC23,AB32,

AB2AC2BC2,

则ACB90°,

△ABC是直角三角形. ················································································ 6分 (3)将y2代入y122xx2 22得122xx22, 22x10,x22.

2). ·P点坐标为(2,·················································································· 8分

25.(10分)

过点A作ANAB垂足为N点, 在Rt△HCD中,

若HDH不小于60°, 则

HC3≥sin60 HD23HD43 ··································· 5分 2A N A′ H′ H C D

即HC≥BMHC≥43 ······································· 6分

B′ P M B Rt△ANP∽Rt△BMP ANAP BMBPANAP·BM643≥23≈3.5cm ··················································· 9分 BP12踏板AB离地面的高度至少等于3.5cm. ······································ 10分26.(10分)

(1)过点C作CDAB,垂足为D.

则AD2,

当MN运动到被CD垂直平分时,四边形MNQP是矩形, 即AMP

C

Q

3时,四边形MNQP是矩形, 2A

M D N

B

t3秒时,四边形MNQP是矩形. 233, 2PMAMtan60°=S四边形MNQP33 ······················································································· 4分 2C

Q

(2)1°当0t1时,

1S四边形MNQP(PMQN·)MN

213t3(t1) 23 ····················································· 6分 2P

B

A M N

3t2°当1≤t≤2时 S四边形MNQP1(PMQN·)MN 2P

C

Q

13t3(3t)·1 233 ··························································· 8分 2A M N

B

3°当2t3时,

1S四边形MNQP(PMQN·)MN

213(3t)3(4t) 273 ··············································· 10分 2A

C

P

Q

M

N B

3t

因篇幅问题不能全部显示,请点此查看更多更全内容