Preliminarydesignrecommendationsfordip-slipfault–foundationinteraction
G.Gazetas·A.Pecker·E.Faccioli·R.Paolucci·I.Anastasopoulos
Received:26November2007/Accepted:14July2008/Publishedonline:15August2008©SpringerScience+BusinessMediaB.V.2008
AbstractThearticleoutlinesthemainfindingsandconclusionsoftheQUAKERresearchprojectandotherrelatedstudiesonthebehaviouroffoundationsbuiltontopofaruptur-ingdip-slipfault.Althoughemphasisisplacedonnormalfaults,thederivedconclusionsarevalidforreversefaults,aswell.Akeyconclusionisthatitisquitefeasibletodesignafoundationtowithstandanunderneathrupturingfault.PracticaldesignrecommendationssuitablefordevelopingfutureCoderequirementsonthesubject,aredevelopedonthebasisofthepresentedconclusions.
KeywordsFaultrupturepropagation·Soil–structure-interaction·Foundationdesign·Practicalconclusions·Designrecommendations
1Introduction
Seismiccodesandengineeringpracticehadinthepastinvariablydemandedthat“buildingsofimportantclasses...shallnotbeerectedintheimmediatevicinityoftectonicfaultsrec-ognizedasbeingseismicallyactive”(e.g.:EC81994).“Immediatevicinity”rangedinthevariousnationalcodesfromafewtensofmeterstoseveralhundredmeters.However,suchastrictprohibitionisdifficult(andsometimesmeaningless)toobeyforanumberofreasons:
G.Gazetas(B)·I.Anastasopoulos
NationalTechnicalUniversityofAthens,Athens,Greecee-mail:gazetas@ath.forthnet.gr
A.Pecker
GéodynamiqueetStructure,Bagneux,FranceE.Faccioli
StudioGeotecnicoItaliano,Milan,ItalyR.Paolucci
PolitecnicodiMilano,Milan,Italy
123
678BullEarthquakeEng(2008)6:677–687
(a)Itisdifficulttoreliablydeterminewhichfaultsarepotentiallyactiveintheearthquake
sense(i.e.,arecapableofgeneratingasignificantearthquakerupture).Eventhedefi-nitionof“active”isdebatable.
(b)Alongthegroundsurface,the“faultoutcrop”neitheriscontinuous,nordoesitfollow
preciselypre-existingfaultoutcrops.Instead,faultsfollowplanesofweaknesswithinaratherbroadshearzone.Thepresenceofsoildepositsfurthercomplicatesthepatternoffaultoutcrop;therupturepathinthesoilisnotasimpleextensionofthebasefault—phenomenasuchas“diffraction”and“bifurcation”changethedirectionof,anddiffusetherupturepath.Secondaryfaultrupturesmayoccuroutsideamappedfaultzone.Thus,predictingtheexactlocationofafaultbreak-outonthesurfaceisaformidabletask,evenwhenonalarge-scalemapthefaultlineisdepictedwithclarity.Forexamplesoferraticandunpredictablepathofafaultoutcrop,seemanysectionsoftheChelungpufaultruptureintheChi-Chi1999earthquakeinthecompanionpaper(Facciolietal.2008).
(c)Largeandspatially-extendedstructures(suchasbridges,tunnels,pipelines,multiple-housingprojects,embankments)cannotavoidcrossingknown(orunknown)seismicallyactivefaults.
(d)Thehazardassociatedwithafaultrupturereachingthegroundsurfacehasalowprob-abilityofoccurrenceinmoderatelyseismicareas.Ontheotherhand,theKocaeliandDüzceearthquakesrevealedthatseveralstructures(simplebuildings,bridges,pylons,bunkers)survivedoutcroppingfaultdislocationsoftheorderof2malmostunscathed.Inmanyofthesecases,thesurfacerupturepathdeviated,andalmostavoidedrupturingdirectlyunderneaththestructure.Inothercases,however,thedamagewassubstantialeventhoughthefaultrupturewas“masked”bythenear-surfacesoilanddidnotcreateascarp.Itbecameapparentthat,inadditiontotheveryimportantroleofthedepthandstiffnessofthesoildepositunderaparticularstructure,interplaytakesplaceamongthestructure,thesoil,andthepropagatingrupture.Thisinterplaymaybeofcriticalimportancefortheperformanceofthestructure.
AllthismotivatedthejointresearcheffortwithintheQUAKERproject,aimedatclarifyingtheroleofthesoil–foundation–ruptureinteractionanddevelopingproperdesignguidelinesforbuildingnearsuspectedoractualactivefaults.Severalpapersinthisissueofthejournalhavepresentedkeyfindingsofthisresearch.
Anintegratedapproachwasfollowedinourresearch,comprisingthreeinterrelatedsteps:fieldstudies,centrifugalexperiments,andnumerical/analyticalmodelling.Specifically:•••
Fieldstudiesofdocumentedcasehistories,whichnotonlymotivatedourinvestigationbutalsoofferedmaterialforcalibrationofthetheoreticalmethodsandanalyses;
carefullycontrolledcentrifugalexperimentshelpedindevelopinganimprovedunder-standingofthekeymechanismsoftheproblem,andinacquiringareliableexperimentaldatabaseforvalidatingthetheoreticalsimulations;and
theoreticalmethods(analyticalornumerical),calibratedagainsttheabovefieldandexper-imentaldata,offeredadditionalinsightintothenatureoftheinteraction,andwereutilisedindevelopingparametricresultsanddesignaids.
Inthesequelwepresentasummaryofourkeyconclusionsandmakesomepracticalrecommendations.
123
BullEarthquakeEng(2008)6:677–687
Refined mesh : element size ≤1 m FoundationConnection between soil and foundation :Interfaceelements allowing for separation and sliding679
Constitutive model : Elastoplastic, preferably with strain softening, capable of treating large deformations L≥ 4Model boundaries : adequate distance to avoid undesired parasitic effects Fig.1Mainprerequisitesforsuccessfulnumericalsimulationoffaultrupturepropagationthroughsoil,anditsinteractionwithfoundation–structuresystems
2MainconclusionsofQUAKERandrelatedstudies
(a)Theuseofproperlycalibratednumericalmethodsofthecompletesystem(soil,foun-dation,structure)undertheactionofalargeimposedfaultdislocationisindispensable.Suchmethodsprovedcapableofexplainingtheobservedbehaviour(bothsuccessesandfailures)ofnumerousstructuresinTurkeyandTaiwaninthe1999earthquakes,andledtoreasonableinterpretationofpreviously-publishedsmall-scaleexperimentalresults.Simpleanalyticalapproachesmayalsobedesirableforestimatingupperboundsof“safe”distancesfromafaultrupture.
(b)Severalprerequisitesforasuccessfulnumericalsimulationwereidentifiedfromapara-metricinvestigation;theyareillustratedinFig.1:
••••
thechoiceofaveryrefinedmesh(elementsizeoftheorderof1morless),orasuitableslip-linetracingalgorithmintheregionofsoilruptureandfoundationloading;
theconsiderationofalongregion(totallengthLequaltofourtimesthedepthtorockH);
thechoiceofasuitableelastoplasticconstitutivemodel,suchasaMohr–Coulombtypemodel(preferablywithstrainsoftening),andbeingcapableoftreatinglargedeformations;
theuseofsuitableinterfaceelementsbetweenfoundationandsoil,allowingforslidingandseparationthatmaybecausedbytheemergingfaultrupture.
(c)Centrifugemodellingofthepropagationofarupturethroughasoildeposit,andcon-sequentlyoftheinteractionbetweentheruptureandarigidfoundationonthegroundsurfaceontopoftheemergingfaultcanbesuccessfullyaccomplished.
Theresultsofsuchmodelling,performedattheUniversityofDundee(Bransbyetal.2008a,b),wereinverygoodaccordwithgenuinepredictionsusingthenumericalmethodologies(Anastasopoulosetal.2007,2008a)for:(i)thediversionandbifurca-tionoftheoutcroppingdislocation;(ii)thedisplacementprofileatthegroundsurface;
123
680BullEarthquakeEng(2008)6:677–687
Superstructure : total averageload q,dimensions, spacing and of structural members, stiffness qFoundation system:type, continuity, rigidity, flexural stiffnesssDepth to Hbedrock :Soil parameters :stiffness (G), strength (,c) and dilation (ψ)αhFaulting parameters :style (normal, reverse), offset at bedrockh, fault dip angle αFig.2Themainfactorsinfluencingfaultrupture–soil–foundation–structureinteraction
and(iii)therotationofthefoundation.Thisgivesconfidenceintheconclusionsandrecommendationsofthisstudy.
(d)ThemainfactorsinfluencingFaultRupture–Soil–Foundation–StructureInteraction
(FR-SFSI),asgraphicallyoutlinedinFig.2,are:
•••••••
thestyleoffaulting(normal,thrust,strike-slip),theangleofdipofthefault,andtheoffset(dislocation)atthebasementrock;
thetotalthickness(H)oftheoverlyingsoildeposit,thestiffness(G),thestrength(ϕ,c)anddilation(ψ)characteristicsofthesoilalongthedepth;
thetypeofthefoundationsystem(forexample,isolatedfootings,matfoundation,box-typefoundation,piles,caissons);
theflexuralandaxialrigidityofthefoundationsystem(thicknessofmatfoundation,sizeandlengthoftiebeams,etc.);
thetotalloadofthesuperstructureandthefoundation;
the(vertical)stiffnessofthesuperstructure(numberanddimensionsofkeystruc-turalmembers,spacingofcolumns,presenceornotofshearwalls,etc.);thedistancesfromthefoundationcornertothefree-fieldfaultoutcrop.
(e)Thedistressofthefoundationstemstoalargeextentfromthelossofsupportdue
todetachmentofitsbasefromthebearingsoil.AsschematicallyillustratedinFig.3,dependingontheexactpositionofthefoundationwithrespecttotheoutcroppingfaultrupture,lossofsupportmaytakeplaceeitheratthetwoendsoratthemiddle.Intheformercase,theunsupportedspansbehaveascantileversonacentralelasticsup-port(giving“hogging”deformation);inthelattercase,asasinglespanonelasticendsupports(giving“sagging”deformation).
(f)Thetypeoffoundationsystemseemstoplayacrucialroleintheresponseofthestructure
totheemergingdislocation.Structuressupportedonrigidmatorbox-typefoundationsperformquitewell,incontrasttothoseonisolatedfootingsoronpiles.Stiffbuildingsfoundedonrigidbox-typefoundationsmayforcethefaultrupturetodivert.
(g)Evenmoderatelyreinforcedbuildings,maybecapableofperformingwellascantile-vers,bridginglocally-generated“gaps”,iftheyarefoundedonrigidandcontinuous
123
BullEarthquakeEng(2008)6:677–687681
CantileverCantileverqSimplified equivalent static systemCantileverHogging deformationCantilever(a)Simply supported single spanqSimplified equivalent static systemSimply supported single spanSagging deformation(b)Fig.3Foundationdistressarisingfromlossofsupport:dependingonthepositionofthefoundationrela-tivetotheoutcroppingfaultrupture,lossofsupportmaytakeplaceateitherofthetwoends(a)oratthemiddle(b)
foundationsystems.Severalsimplebuildingsinthe1999regionofDenizevler,nearGölcük,offeredreal-worldexamplesofsuchencouragingperformance(Anastasopou-losandGazetas2007a,b;Facciolietal.2008).
(h)Foreachcase,thetotalaveragepressureqtransmittedontothesoildeterminesthewidth
ofthezoneofseparation.Ingeneral,increasingqdecreasesthewidthofseparation;insomecasesdetachmentfromthesoilmaybecompletelyavoided(Anastasopoulosetal.2008a,b).Hence,therelativestressingofthefoundationcomparedtotheinitialstaticloadingdecreaseswithincreasingq.Thebeneficialroleofqisdualinthisrespect:(i)bypushingthefoundationitcompressesthesoil,and“flattens”anyscarporasperitythatwouldhavedevelopedonthe(free)groundsurface;and(ii)itchangesthestressfield
123
682BullEarthquakeEng(2008)6:677–687
(i)
(j)
(k)
(l)
underneaththestructure(e.g.increasesthenormalstressesunderthecentre),leadingtodiversionofthefaultrupture.A“heavily”loadedfoundationonsoft/loosesoiliscapableofdivertingthefaultruptureand“flattening”thesoilsurfacesubstantially.Structuresinthevicinityofactivefaultscanbeandshouldbedesignedtowithstandtectonicdislocations.Thisresearch,asoutlinedhereanddevelopedinthecompanionpapersofthisvolume,providescombinednumericalandexperimentalevidenceindi-catingthatfaultrupturediversionispossible.However,eveniftheruptureisdiverted,thefoundationmaystillbesubjectedtosignificantstressing.Thelatterisquitesensitivetotheexactposition,s,ofthefoundationwithrespecttothefaultoutcropasitwouldhaveappearedinthefreefield.Sincethelattercannotalwaysbepredictedwithcer-tainty,whendesigningafoundationagainsttectonic-induceddeformation,itspositionshouldbevariedparametricallyaspartofthedesignprocess.
Buildingsonisolatedfootingsareunableto“avoid”adirect“hit”ofanoutcroppingfaultrupture.Thedislocationemergeswithinthestructure,causingsignificantdifferen-tialverticalandhorizontaldisplacements,andconsequentlydeformationanddistressinthestructure(AnastasopoulosandGazetas2007a,b;Facciolietal.2008).Thus,suchstructuresaresusceptibletopartialorfullcollapsewhensubjectedtoseverefaultdislocations.
Structuresonpilesmayoftenperformworsethanonrigidandcontinuousfoundations.Thisisbecausepilestendtoforcethesuperstructuretofollowtheimposeddeforma-tion,therebyimposingseverehorizontalandverticaldifferentialdisplacementsthatmaydamagethestructure.Asanexample,Fig.4illustratesthedeformationofa3×3pilegroup(withapilecap10m×10minplan)subjectedtoa60◦normalfaultrupturethatwouldhaveoutcropped(inthefree-field)ats=9m,i.e.neartherightedgeofthegroup(Gazetasetal.2007).Thepileswiththeirpressureandtransmittedloadsdiffusetherupture,butstillsufferfromunequalsettlementsandlargenon-uniformhorizontaldisplacements.Thelowerpartsofthefrontandcentralrowofpilesarepulleddown-andout-ward,whilethetipsofthebackrowofpilesremainnearlyfixedinsidethe“footwall”block.Asaresult,therotationandlateraldisplacementofthecapandthebendingmomentsinthepilesattainverylarge,perhapsunacceptable,values.
Structuresrestingondiscretesupports,suchasbridges,arepracticallyforcedtofollowtheimposedgrounddeformation.Bridgeswithcontinuoussuperstructure(deck)willthussufferfromlarge,andmostprobablyun-tolerable,stressing.Suchanexampleofathree-spanroadbridgeisillustratedinFig.5a.Apracticalsolutioncanbetheseparationofthecontinuoussuperstructureinmultiplesimply-supporteddecks(Fig.5b).Insuchacase,themainriskwillarisefromdifferentialdisplacementsandrotationsbetweenadjacentsupports(piers).Withenoughseatingofdeckbeamsandadequaterestraints(stoppers),bridgestructurescanbedesignedtosurviveevenlargetectonicdislocations.
3Designrecommendations
Onthebasisofalltheanalysesreportedinthisandthecompanionpapers,aswellasresultsfromtheliterature(DuncanandLefebvre1973;Berill1983;Youdetal.2000;Bray2001),thefollowingrecommendationsaremadeforfutureseismiccodesforstructuresonactivefaults:
(1)Buildinginthevicinityofactiveseismicfaultscouldbeallowedonlyafteraspecial
seismotectonic–geotechnical–structuralstudyisperformed.Insuchastudy,theeffects
123
BullEarthquakeEng(2008)6:677–687683
Fig.4Groupof3×3pilesfoundedinthepathofarupturingnormalfault:(a)cross-sectiona–aofthe3-Dfiniteelementdiscretisation;(b)deformedmeshofthesoil–pile–capsystemwithsuperimposedconcentrationofplasticoctahedralshearstrains,fors=9m
ofallknownfaultsinthevicinityofthestructureshallbeinvestigated,andmeasuresshallbetakentoeffectivelyfacetheconsequencesoftheirrupturing.
(2)Theexactlocationofsurfaceoutcroppingofaseismicallyactivefaultcannotbepre-dictedwithaccuracy,evenincasesofwell-mappedfaults.Firstofall,itreliesonthelocationofthefaultatbedrock,theestimationofwhichisnotalwaysstraight-forward.Evenifthefaultlineisaccuratelymapped,thereisnopracticalguaranteethatthesamefaultwilloutcropatexactlythesamelocationinafutureearthquake.Sincethelocationofthefoundationrelativetotheoutcroppingfaultruptureiscriticalforitsstressing(Anastasopoulosetal.2008a,b),foundation–superstructuredesignandanalysisshouldbeconductedforarangeofpostulatedpossiblefaultbreakpositions.Furthermore,tak-ingaccountthatthemagnitudeofafuturefaultdislocationisalsoquiteuncertain(e.g.WellsandCoppersmith1994),itshouldalsobeinvestigatedparametrically.
(3)Thepresenceofastructuremayleadtodiversionoftherupturepath,aswellasto
modificationofthesurfacedisplacementprofilecausedbytheemergingfaultrupture(Anastasopoulosetal.2008a,b).Dependingontherigidity,continuity,andweightofthefoundation–structuresystem,evencompletediversionofthefaultpathmaytake
123
684
Continuous deckBullEarthquakeEng(2008)6:677–6873 separate simply-supported decks(a)K.P (km)1 +85020K.P. (km)9009109209301 +850208608708808908608708808909009109209300-200-20-40-60M (MNm)-40-60-80-100-120-140-160-1803 Separate simply-supported decksh = 0h = 20 cmh = 40 cmh = 60 cmh = 80 cmh = 10 cmh = 30 cmh = 50 cmh = 70 cmh = 100 cmContinuous Deckh = 0h = 20 cmh = 40 cmh = 60 cmh = 80 cmh = 10 cmh = 30 cmh = 50 cmh = 70 cmh = 100 cm-80-100-120-140-160-180(b)Fig.5Three-spanroadbridgesubjectedtofaulting-induceddeformation.Comparisonofcontinuousdeckversusthreeseparatesimply-supporteddecks:(a)deformedmeshwithsuperimposedplasticoctahedralshearstrains;(b)evolutionoffaulting-inducedbendingmomentsMalongthedeckwithparametricallyincreasingvalueoftheimposedbedrockoffseth
place.Additionally,dependingonhowsoft/loosethesoilis,adistinct(andsteep)faultscarpmaybediffusedbythestructuretoawidespreaddifferentialsettlement.Hence,soil–foundationinteractionshouldbetakenintoaccountinthedesignofstructuresinthevicinityofactivefaults,andnumericalmethodologiessuchasthosedevelopedinthecompanionpapers(Anastasopoulosetal.2008b)canbeused.ChartspresentedinPaolucciandYilmaz(2007)maybeadvantageouslyusedatapreliminarystageforshallowfoundationstodefinetheconditionsforwhich,whatevertheoriginallocationofthefaultatthebedrockelevation,thegroundsurfacerupturewillnotintersectthefoundation.
(4)Thefoundationtypeplaysacrucialroleintheresponseofastructuretofault-induced
displacement.Properlydesignedtoactaspartiallyunsupported,continuousandrigidfoundationsystems(Fig.6a),suchasrigidmatorbox-typefoundations,areadvanta-geousandshouldbepreferred.Isolatedfootingsshouldingeneralbeavoided.Thelackoffoundationcontinuitymayleadtofaultoutcroppingwithinthelimitsofastructure.Ifused,isolatedfootingsshouldalwaysbeconnectedwithrigidtie-beams(Fig.6b).(5)Piledfoundations,ifrequired,shouldbedesignedwithspecialcare.Theytendto“force”
thestructuretofollowthefault-induceddisplacement(Fig.6c).Toavoidorlimitdamagetothesuperstructure,piledfoundationsshouldbecombinedwitharigidandcontin-uouspilecap,andpossiblywithweakpile/strongsuperstructuredesign(theoppositeofconventional“capacity”design,asappliedtoday).Suchacombinationmayallow
123
BullEarthquakeEng(2008)6:677–687
Heavy StructureLight Structure685
(a)Fault rupturediversionStiff soilSoft soilNo connection between footingsConnection with rigid tie-beams (b)No connection between pile capsConnection with rigid pile cap.Weak pile / strong superstructure design(c)?Fig.6Schematicsummaryofrecommendations:(a)continuousandrigidfoundationsystems(matorbox-type);(b)discontinuousfoundationsystems(spreadfoundations);(c)piledfoundations
thesuperstructurenottobesubjectedtothedifferentialdisplacementexperiencedbythepiles:sincethepileswillbeweakerthanthesuperstructure,theywillbeforcedtofail,leavingthesuperstructureintact.Therigidandcontinuouspilecapisrequired:(i)toenforcepilefailure,insteadoffailureofthesuperstructure;and(ii)tocompensateforthelossofsupportduetopilefailure(i.e.,tobridgelocallygeneratedgaps).Suchadesignphilosophycombinestheadvantagesofapiledfoundation(safetransmission
123
686BullEarthquakeEng(2008)6:677–687
ofsuperstructureloads,whensoilconditionsarepoor),withtheadvantageofrigidandcontinuousraftfoundations(intermsoffaulting-induceddeformation).“Isolating”thepilefromapotentiallydownward(orupward)movingsoilblockshouldalsobeexplored.Suchisolationmaybeachievedthroughuseofspecialcoatingmaterials,suchaslowfrictionasphaltmixes,forexample.
(6)Forbridgestructures,wherefoundationcontinuityisnotpossible(eachpierisfounded
onaseparatefoundation),continuoussuperstructuresystemsaredisadvantageous(thedeckwillbesubjectedtotheimposeddifferentialdisplacement)andsimplysupportedsuperstructuresarepreferable:eachdeckmaybedisplacedand/orrotatedasarigidbody,withoutbeingsubjectedtostressing.Specialcareshouldbetakentoavoiddeckcollapseduetoexcessiverelativedisplacementofthedeckrelativetothepier.Largeenoughseatingandadequaterestrainingdevices,suchasstoppers,arerequiredtoavoidsuchfailures.
(7)Inthecaseofundergroundstructures,suchasboredandcut-and-covertunnels,“open”
cross-sectionsshouldbeavoided.Suchcross-sectionsareequivalenttothecaseofisolatedfootings,andmayallowfaultoutcroppingwithinthelimitsofthetunnel,sus-tainingitssuperstructuretolargedifferentialdisplacements.Instarkcontrast,“closed”cross-sectionsprovideadequatecontinuityandrigidity,helpingthetunneltoconverttheimposeddeformationtorigidbodyrotationinsteadofdistortion.Incut-and-covertunnels,theweightofthefill(cover)playsasignificantroleandshouldbetakenintoaccount.Itseffectmaybeseenasqualitativelysimilartotheeffectofthesurchargeloadonaraftfoundation.
4Limitations
Thenumericalandexperimentalstudiesutilisedtoderivetheconclusionsanddesignrec-ommendationsofthepresentpaperdealwiththequasi-staticoffsetduetodislocationoftheseismogenicfault.Therelatedshakingcomponentistheresultofthemultitudeofseismicwavesemanatingfromdifferent“points”oftherupturingfault,andisconsideredasanalto-getherdifferenttypeofloading.Thecombinationofthetwophenomena(quasi-staticoffset,andoscillatoryshaking)maybeparticularlysevereforthesuperstructure(notspecificallyforthefoundation).Suchcombinedstressinghasnotbeenaddressedinthepresentwork,andfurtherresearchisdesirable.
5Conclusions
ThepresentarticlehasoutlinedthemainfindingsandconclusionsoftheEU-fundedQUAKERresearchproject,incombinationwithotherrelatedstudiesdealingwiththeinteractionoffoundation–structuresystemswithdip-slipfaultruptures.Onthebasisofnumericalandexperimentalsimulations,asetofpracticaldesignrecommendationshasbeenproposed.Althoughpreliminary,theserecommendationscanformthebasisforfutureCoderequire-mentsonthesubject.Thekeyconclusionisthatitisquitefeasibletodesignfoundation–structuresystemstowithstandanoutcroppingdip-slipfaultrupture.However,giventhecomplexitiesoftheproblem,buildinginthevicinityofactiveseismicfaultsshouldbeal-lowedonlyafteraspecialseismotectonic-geotechnical-structuralstudyisperformed.Insuchastudy,theeffectsofallknownfaultsinthevicinityofthestructureshallbeinvestigated,andmeasuresshallbetakentoeffectivelyfacetheconsequencesoftheirrupturing.
123
BullEarthquakeEng(2008)6:677–687687
References
AnastasopoulosI,GazetasG(2007a)Foundation–structuresystemsoverarupturingnormalfault:partI.
ObservationsaftertheKocaeli1999earthquake.BullEarthqEng5(3):253–275
AnastasopoulosI,GazetasG(2007b)Behaviourofstructure–foundationsystemsoverarupturingnormal
fault:partII.AnalysisoftheKocaelicasehistories.BullEarthqEng5(3):277–301
AnastasopoulosI,GazetasG,BransbyMF,DaviesMCR,ElNahasA(2007)Faultrupturepropagationthrough
sand:finiteelementanalysisandvalidationthroughcentrifugeexperiments.JGeotechGeoenvironEng133(8):943–958
AnastasopoulosI,GazetasG,BransbyMF,DaviesMCR,ElNahasA(2008a)Normalfaultruptureinteraction
withstripfoundations.JGeotechGeoenvironEng,ASCE134(inprint)
AnastasopoulosI,CallerioA,BransbyMF,DaviesMCR,ElNahasA,FaccioliE,GazetasG,MasellaA,
PaolucciR,PeckerA,RossignolE(2008b)Numericalanalysesoffault–foundationinteraction.BullEarthqEngdoi:10.1007/s10518-008-9078-1
BerillJB(1983)Two-dimensionalanalysisoftheeffectoffaultruptureonbuildingswithshallowfoundations.
SoilDynEarthqEng2(3):156–160
BransbyMF,DaviesMCR,ElNahasA(2008a)Centrifugemodellingofnormalfault–foundationinteraction.
BullEarthqEngdoi:10.1007/s10518-008-9079-0
BransbyMF,DaviesMCR,ElNahasA(2008b)Centrifugemodellingofreversefault–foundationinteraction.
BullEarthqEngdoi:10.1007/s10518-008-9080-7
BrayJD(2001)Developingmitigationmeasuresforthehazardsassociatedwithearthquakesurfacefault
rupture.Workshoponseismicfault-inducedfailures—possibleremediesfordamagetourbanfacilities.UniversityofTokyoPress,pp55–79
EC8(1994)Eurocode8—designofstructuresforearthquakeresistance.Part5:foundations,retainingstruc-turesandgeotechnicalaspects.prEN1998-5,FinaldraftAugust2003.ComitéEuropéendeNormalisa-tion,Brussels
DuncanJM,LefebvreG(1973)Earthpressureonstructuresduetofaultmovement.JSoilMechFoundEng,
ASCE99:1153–1163
FaccioliE,AnastasopoulosI,CallerioA,GazetasG(2008)Casehistoriesoffault–foundationinteraction.
BullEarthqEng[Specialissue:Integratedapproachtofaultrupture-andsoil-foundationinteraction,Companionpaper(submittedforpossiblepublication)]
GazetasG,AnastasopoulosI,ApostolouM(2007)Shallowanddeepfoundationsunderfaultruptureorstrong
seismicshaking.GeotechEarthqEng,Springer,chap9,pp185–217
PaolucciR,YilmazT(2007)Limitanalysisoffault–foundationinteraction.BullEarthqEng[Specialissue:
Integratedapproachtofaultrupture-andsoil-foundationinteraction,Companionpaper(submittedforpossiblepublication)]
WellsDL,CoppersmithKJ(1994)Newempiricalrelationshipsamongmagnitude,rupturelength,rupture
width,rupturearea,andsurfacedisplacement.BullSeismolSocAm84(4):974–1002
YoudTL,BardetJ-P,BrayJD(2000)Kocaeli,Turkey,earthquakeofAugust17,1999reconnaissancereport.
EarthqSpectra,SupplAtovol16,456pp
123
因篇幅问题不能全部显示,请点此查看更多更全内容