摘 要: 提出了一种新的图像质量评价标准,通过图像的运动模糊参数来估计出图像由于运动而造成的信息损失量,并通过信息损失的多少来评价图像的质量。实验表明,该方法能客观地体现出运动模糊图像的质量与运动模糊参数之间的关系,这种关系对于图像的质量评价特别是有参考条件下的图像质量评价具有良好的效果。同时还根据活动度和图像灰度梯度能客观地表示图像细节部分的特性。将图像分块,并从8个方向对图像进行分析,客观地评价出无参考条件下直线运动模糊图像的质量。 关键词: 质量评价;运动模糊参数;信息损失;直线运动模糊;活动度
图像的去模糊是图像处理中的一个重要分支,在获取图像过程中,由于物体与相机之间的相对运动会造成得到的图像总会有一定程度的模糊。在现实生活中,运动模糊图像广泛存在,图像会因为摄像者与对象之间的角度和物体与相机之间的相对运动速度等的差异而导致所得到的运动模糊图像有着不同的质量,这种差异即为图像的运动模糊参数的差异。找出图像的质量与其运动模糊参数之间的关系具有重要的意义。因为在去除这些模糊之前往往要通过一定的评价来估计出图像的质量,能否准确地估计出图像质量对图像后期的去模糊处理有着重要的意义。 目前大多数情况下,对模糊图像的质量评价一般采用主观的评价方法,但是主观评价不能建立一定的数学模型,而且由于主观差异的存在,不同人的知识背景和主观目的、兴趣等的不同而得出不同的结论,不能适用于很多场合。而客观质量的评价方法大致可以分为无参考图像的质量评价和有参考图像的质量评价。1 传统的图像质量分析算法 图像的质量分析一般为有参考条件下的质量分析和无参考条件下的质量分析两种[1-4]。无参考判断图像的质量评价是指在不借助任何参考图像的前提下,对模糊图像的质量进行评价。而有参考图像的质量评价是指将模糊的图像与参考图像(即原图像)进行对比,得出图像的质量。传统的图像质量分析算法: (1)梯度函数。在数字图像中,图像的梯度函数可以用来对图像进行图像的边缘提取及其图像的二值化,一般来说,可以认为图像越是清晰,其图像的灰度就会变化越剧烈,就应该具有相对比较大的图像梯度值。利用梯度函数估计图像的质量一般有灰度梯度能量函数、Robert梯度和拉普拉斯(Laplacian)算子。下面以Laplacian(四邻域微分)算子和梯度幅值介绍图像的梯度函数的评价方法。 对于一幅图像,对图像中的每一个像素在2×2的领域内采用Laplacian算子,得到四邻域微分值,然后再将得到的每一个微分值求和。Laplacian算子(四邻域微分)的方法如下: 利用相邻像素之间的方差[6]对图像的质量进行分析,图像质量越好,相邻像素点间的灰度差值就越大,从而S值也就越大。(3)基于图像相似度方法 这种方法主要是针对在有参考图像条件下的图像质量评价,图像的相似度[7]主要利用均方差误差、平均绝对值误差、修正最大范数、多分辨率误差、均方信噪比及峰值信噪比等对图像的质量进行判断。此方法主要是将模糊图像与参考图像的各种特征进行比较,二者误差越小,它们的相似度就越大,然后通过与原始图像的相似程度来判断图像的质量。以均方误差为例,一幅图像中,其均方差为: 式中,b(x,y)是图像抛出点的边缘信息抛出量,I(x,y)是图像在像素点(x,y)的信息量。一般情况下,通过式(8)在有参考图像的条件下,只要估计出图像的运动模糊参数就可估计出图像的质量。 (2)统计边缘信息 一幅图像的主要信息,主要是通过其边缘信息量的多少来显示,边缘不明显的图像,可以认为其模糊度越大。一幅m×n的图像,对其进行边缘提取之后,图像中所显示的轮廓信息就是其包含的信息量。即边缘信息量:
通过对图3~图6图像的分析可以看出,在同一幅图像下,由于运动而导致的模糊图像中,越是模糊的图像的边缘信息抛出率η越大。而对于不同的图像,可以通过计算η来比较其质量,η越小,图像越清晰,则e越大,与图像的内容没有关系。在这一规律情况下,
对有参考条件下的直线运动图像模糊度估计,只需要估计出图像的运动模糊参数,就可以通过原始图像按图1分块,计算边缘信息抛出率即可以估计出图像的质量。而且根据这一规律,也可以计算出图像在哪个方向角具有最大的模糊度,不同的图像最大模糊度所具有的方向角是不同的,这要看图像在哪个方向角运动下的η值最大。 本文在分块和边缘活动度的基础上,提出了计算图像清晰度的方法,并以一种新的通过估计边缘信息的损失为基础的方法对图像进行分析,与各种算法进行比较。实验表明,该方法能客观地评价出图像的质量,而且能准确地估计出同一运动尺度下图像在哪个方向下具有最大的模糊度。该方法在对于有参考情况下的图像模糊度评价更直观,具有很好的效果。
因篇幅问题不能全部显示,请点此查看更多更全内容