您的当前位置:首页正文

数控加工论文范例

2023-05-11 来源:年旅网

数控加工论文范文1

1.1“3+2”轴加工模式“3+2”加工是五轴加工的常用模式,它指的是在五轴加工过程中,在两个旋转轴(ABC中的两个)的矢量方向确定后,3个直线轴(XYZ)做三轴联合运动完成零件加工的方式。这种加工模式能够提高生产效率,减少装夹次数,避免零件的安装误差。这种加工模式在加工箱体、模具零件的底部或侧壁时,可使用短刀具加工提高加工刚性。在进行“3+2”五轴加工模式时,先要建立定位坐标系,然后确定机床的旋转轴后在进行零件的定位加工,在斜面上加工孔时,采用这种加工模式,体现出很高的效率。“3+2”模式的五轴加工编程相对简单,对五轴机床的磨损小(旋转轴的使用寿命比直线的使用寿命低)。“3+2”模式的五轴加工不足是:加工时两个向量之间存在加工界限,在精度不高的五轴机床上加工时会产生“台阶”,而五轴联动加工则可以避免。

1.2“4+1”轴加工模式“4+1”轴加工指的是:在进行五轴加工时,一个旋转轴(ABC轴中的一个)角度确定,剩下的三个直线轴加一个旋转运动轴可同时做联合运动完成零件的加工。这种五轴加工模式适合加工近似回转体类的零件。在保证刀具不干涉的情况下使用采用“4+1”轴加工可以减少零件装夹次数,提高生产效率,提高零件的加工精度。

1.3五轴联动加工五轴联动加工指五个运动轴(包括XYZ三个直线轴和ABC中的两个旋转轴)同时运动对零件进行加工的一种模式。在进行五轴联动加工时,可对加工过程中的刀具轴线方向进行优化,改变刀轴的矢量方向,保证在整个刀具路径上都可保持最高效的切削模式,具有连续性,没有加工的接刀痕迹,表面粗糙度好等优点。五轴联动加工不仅能控制加工误差,而且能提高零件表面质量,同时可根据工艺要求,均匀地切除复杂曲面材料,这样就能有效控制工件的应力和热变化。例如在加工螺旋桨、航空发动机的整体叶轮时都需用到五轴联动加工保证产品的质量和精度。以上三种加工模式如图1所示:图1五轴加工模式

2五轴加工的关键技术

要加工出高质量的五轴零件需要有先进的五轴设备、高效的五轴编程软件和合理的五轴加工工艺,三者缺一不可。具体操作流程为:根据加工条件,用CAD/CAM软件完成零件的三维造型及刀路设置,根据机床性能后置处理生成程序;然后应用仿真软件进行欠切、过切、碰撞检测以及试切削;最后操作五轴机床完成零件的。

2.1五轴机床五轴数控机床相对于三轴数控机床来说,不仅仅是增加两个旋转轴的问题,它在算法、控制技术上有着很大的提升,其关键技术包括主轴速度、驱动技术和控制技术,这些参数影响了五轴数控机床的加工范围和加工精度。

2.1.1主轴速度。五轴数控机床在复杂异形件时,经常需要用到小直径刀具来提高零件表面质量,为此需要主轴具有较高的转速。如今五轴机床的主轴大多都采用电主轴(主轴速度基本保持在20000~50000r/min)来提高效率,减少能量损耗。在细微铣削(铣刀直径一般采用0.1~2mm)加工过程中,需要机床具备更高的主轴转速。

2.1.2驱动技术。在进行复杂曲面加工时,经常需要对五轴机床的主轴转速和角度进行制动和变速以适应各种型面的加工。为达到在较高的进给速度或在短距离的走刀路径上,平稳地加工零件的轮廓,这就要求设备具有很高的主轴加速度。因此,在五轴加工过程中,主轴的加速度将控制着零件的加工精度和刀具的寿命。目前,普通的加工中心基本都是采用伺服电机和滚珠丝杠来驱动直线轴运动,但对于高端数控设备现已开始采用直线电机,如德国DMU公司的DMC75VLinear高速五轴加工中心。直线电机的优点包括:可简化机床结构,减去机床中将回转运动转换为直线运动的机械传动部件,减少能量损耗,从而有效提高零件加工精度,保证各轴的动态性能及移动线速度的稳定性。如今,大部分的五轴联动加工中心基本都采用转矩电机来控制主轴头和回转工作台的运动和摆动。转矩电机是一种同步电机,属于直接驱动装置机构,它在转子上固定有需要驱动的零部件,这样就能尽量减少机械传动零部件。转矩电机的伺服响应灵敏,输出扭矩大、无传动间隙、无零件间的接触传动(避免磨耗)等特点,其角速度是传统蜗轮蜗杆机构的6倍以上,在驱动主轴头摆动的加速度可达3g以上。采用转矩电机替代传统的机械传动结构可以将设备简化,减少零部件数量,提高传动效率,同时提高整个机构运行的稳定性,从而提高零件的加工质量和效率。

2.1.3控制技术。五轴联动加工就是要实现5个运动轴的同时运动,完成零件的加工。由于旋转运动轴的存在,导致坐标系是运动变化的,使得编程算法比三轴机床的算法复杂很多,各种插补运算量庞大,同时细微的旋转坐标轴误差将导致很大的加工误差。为此,要求五轴联动加工中心数控系统具备强大的控制和伺服能力以及高效的运算速度和控制精度,同时还要求系统具备良好的刀轴中心点控制管理能力,实现刀具长度补偿和刀具半径补偿,从而实现圆柱面和倾斜工作面的高效加工。目前在五轴联动加工中,常用的数控系统有:德国Siemens公司的Siemens840D和Heidenhain公司的iTNC530,它们广泛应用于各种高端的数控设备中。

2.2五轴加工工艺

五轴数控加工工艺的划分模式有:按粗、精加工分,依据零件的形状、尺寸及精度等因素,将粗精加工分开的原则进行工艺划分;按刀具集中分,按选择的刀具进行工艺的划分,可以减少换刀次数,缩短加工时间,提高加工精度及效率;按加工部位分,遵循的原则有先近后远、先简后繁、先平面后孔。五轴联动精加工时,五轴设备的刚性、切削能力以及被切削材料的硬度都是应该考虑的因素。根据机械加工工艺规程,在五轴精加工时一般预留0.5~0.8mm的余量精加工。过大的切削量是不允许的,它将对五轴机床的主轴造成损坏,因此工艺人员在制定工艺方案时,应着重考虑五轴联动加工时的切削参数,并书面告知操作人员注意事项。同时在进行五轴联动加工前应进行仿真验证,避免碰撞及过切现象的产生。

23五轴加工关键技术

2.3.1刀轴控制。五轴联动加工过程中的刀具轨迹非常复杂和抽象,为了加工出复杂异型零部件的曲面及空间,经常需要进行多次坐标系和刀轴的变化来完成零件的加工,同时还要考虑各运动轴的协调性,避免干涉、碰撞现象的产生,因此在执行程序前需要用CAD/CAM软件对刀轴进行验证。

2.3.2试切加工。在五轴联动加工过程中,为提高多轴加工的效率及保证加工系统的刚性,实际的切削参数往往要比NC程序中设定的值低(尽量先将倍率调到较低值,然后慢慢提高,直至找到一个最佳方案);另外,当五轴设备的五个运动坐标轴都在运动时,其刚性比三轴设备要低,如果处理不好,将直接影响设备的性能和产品的加工精度。

2.3.3CAD/CAM软件。要实现复杂曲面的五轴加工,关键需要五轴CAD/CAM软件来实现加工工艺。如今能进行五轴编程的软件有UG、hyperMILL、cimatron、powermill、caxa制造工程师等,其中由于powermill软件具有功能强大,操作简便等特点,在国内市场的占有率正在逐年提高。现在越来越多的学校、工厂正在用powermill软件编制五轴加工刀路,完成复杂异形零件的加工。powermill软件中的五轴加工策略很多,其中“曲面投影精加工”策略的加工范围广、生成的刀具路径质量高效,特别适用于复杂曲面的加工,越来越受到机械制造工艺师的青睐。为此,研究“曲面投影精加工”的原理、相关参数的含义以及使用方法,对用好该五轴加工策略意义重大。

2.3.4刀路优化。在编制NC程序时,要避免刀轴不必要的、过度的摆动,防止因机床主轴或工作台过于频繁的摆动,造成机床的损坏。在进行刀路优化时,着重要注意连接刀路的设置,生成多轴刀路后,还需根据机床性能、零件特征,调整连接刀路参数,优化刀具路径。

2.3.5仿真验证。由于五轴设备贵重,加工程序量大,需要考虑的干涉、碰撞问题较多,所以实际加工前一定要先进行模拟加工。。

3结语

数控加工论文范文2

1.1加工刀具分析

在数控铣削曲线槽的加工中,从零件的加工精度考虑,应该分别使用两把相同规格尺寸的铣刀,更有利于曲线轨迹尺寸和表面粗糙度的保证,同时可以简化程序编制的节点参数计算。

1.2零件装夹与定位基准分析

在数控铣削加工中,利用完成加工的¢130圆柱内孔和两端内孔倒角,使用定位芯轴进行零件的装夹,利用定位芯轴一端外圆和另一端的内孔倒角,使用分度头采用一夹一顶的方式进行零件的装夹定位。同于零件的车削加工,零件轴向的定位基准选择在零件¢130内孔和零件的右端面。这样处理的好处是在零件的车削加工和数控铣削加工中均采用相同的基准和相同的方式进行装夹定位,符合基准重合的原则,有利于提高零件的加工精度和几何精度。

1.3数控加工方式分析

由零件的结构形状可知,凸轮的曲线槽轨迹由直线和圆弧构成。曲线槽的直线轨迹是沿零件轴线直线运动的轨迹,曲线槽的圆弧轨迹是沿零件轴线的旋转运动和沿零件轴线的直线运动合成的轨迹。由数控旋转工作台工作的原理和特点可知,数控旋转工作台的运动是按照角度进行控制的,应用附加旋转轴的数控加工方法能够满足零件圆周表面上直线(斜线)槽轨迹的加工,而不能满足零件圆周表面上圆弧槽轨迹的加工要求。欲满足上述加工要求,必须将零件圆周表面上的角度控制转换为零件圆周表面上的直线长度控制,才能满足零件圆周表面上圆弧槽轨迹的加工要求。由上述分析可知:该零件应该运用下列加工方式来进行圆筒凸轮曲线槽轨迹的数控铣削加工。在立式数控铣床上,使用普通FW-125型分度头,经数控改装后进行零件曲线槽轨迹的数控铣削加工。如具体如下:将普通FW-125型分度头固定在铣床工作台上,使分度头的旋转中心轴线与铣床X向直线轴运动方向平行,在分度头上装夹圆筒凸轮零件并使得零件中心轴线与分度头的旋转中心轴线重合。X向运动控制铣床工作台做纵向直线移动;Y向运动控制铣床工作台做横向直线移动;Z向运动控制铣床工作台做垂直直线移动。旋下Y向电动机与数控系统连接的旋纽,旋上需另外配置相同型号的Y向电动机,用来控制分度头来实现沿工件中心轴线的旋转运动。使用Z轴单动来进行零件加工中的进刀、退刀运动;使用X轴、Y轴(此时为旋转轴)联动来进行直线和圆弧轨迹的插补,应用直角坐标的控制方式来进行零件曲线槽轨迹的数控铣削加工。采用此方式加工的零件轮廓和轨迹精度可以满足加工要求,并且加工操作方便,简便易行。

2分度头的数控改装及转换控制原理

数控改装如下进行:用原来实现横向直线位移的Y向伺服电动机,来联接控制FW-125型分度头的输入蜗杆,控制其做旋转运动。由于控制传动部件(原来为铣床横向丝杠,现在为FW-125型分度头输入蜗杆)的不同,则会引起运动参数的变化,必然使得Y向的位移轨迹失控或变形,也使得与X向联动运行圆弧轨迹失控或变形。由数控系统的控制原理可知:Y向伺服电动机转动一转,带动被联接的滚珠丝杠转动一转,此时直线位移一个丝杠螺距值t(一般t=6mm)。当Y向伺服电动机用来联接控制FW-125型分度头时,由于FW-125型分度头中蜗轮蜗杆的传动比i=40,因此Y向伺服电动机转动一转,带动被联接FW-125型分度头的输入蜗杆转动一转,Y向伺服电动机转动40转,带动被联接的FW-125型分度头输入蜗杆转动40转(即工件转动一周),此时的编程位移长度为mm,可带动被联接的FW-125型分度头的主轴以及工件转动一周,此时实际位移的旋转长度为零件的圆周长(Ly=πd=150π=471.238898)。欲使L1=Ly,在Y向伺服电动机与FW-125型分度头输入蜗杆的联接间增加一级齿轮传动,即可使得上述问题得到解决。

3结束语

数控加工论文范文3

职业教育课程与普通教育课程两者在课程形态上有很大差异,职业教育课程相比普通教育课程具有定向性、适应性、双重性等特点。根据社会需要培养实用人才,是职业教育的根本任务,职业教育课程是为了适应特定区域、特定职业的需要而开发和实施的。当今世界,科学技术日新月异,劳动世界变化莫测,当代的职业教育课程必须及时吸收科技发展的最新成果,才能适应社会的发展需要,这就决定了职业教育课程开发必须是一个不断进行的动态过程。职业教育不是以掌握符号知识为目标的,它是为具体工作做准备的教育,它所培养的学生必须能够有效的完成工作任务,在工作中所依赖的知识大部分是实践知识,理论知识只有转化为实践知识后,才可能被应用到行动中去,职业教育课程是一种以实践知识为主的课程,实践知识学习最为有效的途径是实践过程,因此把工作实践过程设计成学习过程,就成为职业教育课程的内在要求。实施职业教育课程需要大量的实训设施和耗材、设备维修与更新、水电供应和往返实训基地的差旅费,等等。为了教给学生先进的技术知识,就必须购置现代化设备,因此,在职业教育的过程中要找到更多的节约资源的办法,这就需要学校和企业建立长久的合作关系。

2数控专业课程设置的现状

原来数控加工专业的课程主要包括包括:机械制图、计算机基础、工程力学、机械制造基础、机械设计基础、数控加工工艺及装备、数控机床、数控机床编程与加工、数控原理与系统、单片机与PLC、数控机床电气控制技术、数控机床故障诊断与维修、液压与气压传动、CAD/CAM应用软件、先进制造技术、模具设计与制造等二十多门功课,这么多的课程,学生很难懂,而且在工作的时候有很多知识用不到,这样就造成了:学校与工厂严重脱节,会的用不到,用到的不会的状况。现在该委培专业的专业课程主要包括:机械制图、金属加工与实训(钳工工艺与实训)机械基础、电工电子技术与技能、机械测量技术等,与原来的相比,减少了专业课程的开设,增加了专业技能训练的课时,把相关专业课程如:数控加工工艺及装备、数控机床、数控机床编程与加工、数控原理与系统等,参渗到技能训练中,强化了动手和解决实际问题的能力。为了培养学生的技能品性,特开设职业健康与安全、心理健康、环保教育等选修课。。

3解决方法

。对于数控专业课程的设置,首先要根据订单企业的人才需求及就业岗位,确定职业教育目标,明确把学生的导向,制定人才培养方案的目标,对中职数控加工专业进行深入调研和剖析,找准毕业生重点培养岗位,在遵循课程设置依据及原则基础上,整合优化专业课程设置,构建了基于工作过程的课程开发体系,以工学结合为切入点,课证融合,改进了课程的评价方法,推行全面素质评价,以促进数控加工专业人才培养质量的全面提高。然后制定课程计划的目标、每门课程的目标及教师根据人才培养方案制定教学目标。

数控加工论文范文4

机床建模是虚拟仿真加工系统的关键模型,是实际机床在虚拟仿真加工系统中的数字化模型,包括几何模型和运动模型。几何模型是在CAD系统中建立的,首先根据实测得到的机床部件尺寸,建立相应的模型,然后再根据相互关系进行“装配”,形成机床的几何模型。虚拟仿真加工系统中,通过改变机床几何模型各运动零部件的相对位置来模拟加工中虚拟机床的切削运动。运动模型是处理机床几何模型在数控程序控制下如何改变各运动零部件模型相对位置的模型,与机床的结构紧密相关。以DMU125P五轴加工中心为例,在运动模型建立过程中,机床各部件都视为刚体,这样机床的结构可抽象为一个运动链模型。在运动链各组成环节的刚体上固接坐标系,通过坐标变换,可以分析整个运动链的运动形式,建立运动链的依赖关系,即运动链的拓扑结构关系,如图3所示。

2虚拟仿真数控加工功能的实现

a)系统框架的建立

在虚拟仿真加工开始之前,针对工艺信息,选择相应的虚拟机床、虚拟刀具、虚拟夹具、工件模型组成虚拟仿真加工系统。在虚拟仿真加工中,虚拟机床在数控指令的驱动下带动虚拟刀具、虚拟夹具、工件模型等模拟切削过程,实现对数控程序的正确性和可靠性的验证,其系统框架如图4所示。虚拟仿真加工系统主要包括数控程序检查、数控程序翻译、运动仿真、刀具轨迹检查、碰撞检测等模块。

b)程序检查模块

数控程序检查模块包括词法、语法检查,主要检查程序中是否有数控指令集外的非法字符、数控指令的参数是否有效、语法上是否合乎逻辑等。

c)程序翻译模块

数控程序翻译模块以机床的数控程序规范为基础,用以提取G指令、M指令、坐标、进给速度、主轴转速、换刀、循环定义等信息,转换为仿真数控代码。这样在虚拟仿真加工中,才能控制虚拟仿真加工系统的运动仿真和状态设置,为运动仿真模块提供必要的信息。

d)运动仿真模块

该模块是虚拟仿真加工系统最关键的一个模块,决定了后续的刀具轨迹检查、碰撞检查结果的正确性。在该模块中,首先根据机床的运动模型,建立虚拟仿真加工系统各运动组件(包括虚拟机床各运动零部件、虚拟刀具、虚拟夹具和工件模型)的运动模型(即变换矩阵);然后根据翻译模块所提供的坐标值计算各运动组件的变换矩阵并应用以改变各运动组件的位置,从而可以模拟虚拟仿真加工系统的运动,具体步骤如图5所示。

e)刀具轨迹检查模块

该模块主要用于刀轴矢量的检查,以避免刀轴的剧烈变化。大多数的CAM系统都提供了加工仿真和刀位轨迹(刀具轨迹数据包括刀位数据和刀轴矢量)仿真检查功能。但对多坐标加工而言,加工仿真和仅显示刀位轨迹是远远不能满足要求的。在虚拟仿真加工系统运动模拟的过程中,该模块在显示刀位轨迹的同时,也显示刀轴矢量,这样可以准确地检查刀具相对于工件位置及刀轴的变化。

f)碰撞检测模块

对五坐标加工而言,刀具相对于工件的运动轨迹很复杂,难以预测,通常需要进行仿真检验数控程序中可能出现的碰撞干涉。大多数CAM系统提供的加工仿真功能仅考虑刀具与工件、夹具间的碰撞检查,而不能检查可能出现的刀具与工作台间、主轴与工件、夹具间的碰撞。在该模块中,根据经运动仿真模块处理后的各运动零部件的相对位置,全面检查可能出现的碰撞。

3应用实例

DECKELMAHO公司的DMU125P机床是五轴五联动加工中心,具有立卧转换功能。在立式状态下,其结构形式如,a轴为工作台摆动,c轴为工作台转动。在卧式状态下,主轴绕b轴旋转90°,其他状态与立式结构相同。在该机床上进行五轴五联动的加工时,刀具相对于工件的空间运动轨迹复杂,加工前必须进行虚拟仿真加工。本文以VERICUT软件为平台,构建了DMU125P加工中心的虚拟仿真加工系统,用来检验数控加工程序、刀具轨迹与潜在的碰撞危险。在构建125P加工仿真环境时,首先根据运动链关系建立机床拓扑结构关系;然后建立机床的数字模型;最后根据工件、刀具、夹具和机床的数字模型构建虚拟仿真加工环境。

4结语

数控加工论文范文5

在Pro/ENC制造模块环境中,以“缺省”模式将行星减速器支架的参照模型装配到制造环境中,如建立制造模型时,为了方便毛坯工件的装配,在建模过程中,将毛坯工件与参照模型建立一致的坐标系,将毛坯工件以“缺省”模式和参照模型装配到一起,建立了行星减速器支架的制造模型。

2工艺分析及制造参数设置

(1)工艺分析

根据行星减速器支架结构尺寸图及其毛坯件结构尺寸图,分析可知,主要是对行星支架上的3个圆柱体进行加工,包括圆柱柱面外形轮廓、圆柱顶表面、圆柱顶面的凹槽及孔的加工。该毛坯件属锻造件,在锻造时,考虑到锻造工艺性,设置了拔模角度,故圆柱的毛坯外形呈圆锥状。当采用镗削加工时,由于圆锥根部的吃刀量较大,需要分层镗削加工,每加工一层就需要手动调整一次镗刀,才能使镗刀实现径向进刀,降低了效率,而且镗刀属单刃形式,其结构刚度较差,镗刀刀杆易变形,根据误差复映原理,加工出的柱面也会呈椎状,从而降低了加工精度。而采用铣削加工时,不需要手动调整刀具,完全可以实现自动进刀,而且铣刀属多刃形式,其结构刚度大,变形量小,若同时采用轴向和径向2个方向的分层铣削方式,可以提高其加工精度。采用铣削加工时,该件的主要加工工艺:3个圆柱体顶面的表面铣削、3个圆柱体柱面的外轮廓铣削、3个圆柱体顶面凹槽铣削及3个圆柱体顶面处孔的钻削。

(2)制造参数的设置

在Pro/ENC制造模块中设置制造参数,设置内容主要包括NC机床设置、机床零点设置和退刀曲面设置。根据工艺分析,在NC机床设置中机床类型和轴数分别设置为铣床和三轴。加工零点设置在圆柱上表面和中心孔轴线相交点处。退刀面设置在距离圆柱上表面20mm位置处的平面。

3设置各加工工艺的NC序列并进行仿真加工

根据工艺分析,分别设置各工艺的NC序列,并生成相应的刀具路径,然后利用Pro/ENC制造模块中的虚拟加工模块VERICUT6.0.6进行仿真,从而验证加工路径的正确性。

(1)圆柱上表面加工NC序列

在Pro/E4.0制造模块中建立第1个序列,其加工方式设置为表面铣削方式,并分别设置其刀具、切削用量、跨度、步长深度及扫描类型等参数。

(2)柱面外轮廓加工NC序列

在Pro/ENC制造模块新建第2个序列,其加工方式设置为轮廓铣削方式,同样设置相应的刀具、切削用量、步长深度及扫描类型等参数。

(3)凹槽加工NC序列及刀具路径

在Pro/ENC制造模块新建第3个序列,其加工方式设置为腔槽加工铣削方式,同样设置相应的刀具、切削用量、跨度、步长深度及扫描类型等参数。

(4)准8mm孔加工NC序列及刀具路径

在Pro/ENC制造模块新建第4个序列,其加工方式设置为孔加工方式,同样设置相应的刀具、切削用量及孔径等参数。

4后置处理及加工

上面设置了各加工工艺的NC序列,确认正确后,对其进行后置处理并生成CL数据。Pro/ENC具有较强大的NC后置处理功能,能够生成ASCII格式的刀位(CL)数据文件,即得到零件加工的刀具运动轨迹文件。然而,实际加工机床并不能够识别这些文件,需将这些文件处理成相应数控机床能够识别的数控加工代码(即MCD文件),该过程称为后置处理过程。在Pro/ENC制造模块中,利用其后置处理功能,生成行星减速器支架所需要的数控加工NC代码。。

5结语

数控加工论文范文6

1.1叶片加工材料一般来说,轴流泵叶片制造材料选用ZGOCr13Ni4Mo材料。这种材料具有可焊性强、硬度高、抗气浊性强、耐磨等优点,是水泵、水轮机等制造业中常用的材料类型。该材料的各项化学成分如表1所示。

。(2)对叶片正面与背面的波浪度要求为,波浪度小于0.02,叶片进出水口容易出现气浊现象的部位,波浪度需要控制在0.01。(3)叶片安放角度偏差需要控制在15°。。

1.3处理工艺传统的轴流泵叶片加工方式主要是表面手工打磨,而现阶段主要的叶片加工方式为数控机床加工,在数控机床系统中配置了COM/CAD/CAE软件,能够按照设计要求进行叶片曲面流线设计,进行仿形加工,与手工打磨工艺相比,数控加工方式在加工流程方面有一定的变化,增加了数控加工流程以及叶片表面坐标检测等流程。采用数控机床加工叶片工艺流程为:叶片树溶处理叶片随形磨、打磨按照叶片坐标、投影检测坐标,划出中心孔位置线及零度位置线钻两端中心孔粗加工叶片柄部叶片坐标检测、记录探伤检查精加工叶片柄部钻定位孔或铣叶片坐标检测、记录叶片表面数控加工叶片称重分组及转子体装配加工叶片外球形校静平衡。其中,与传统的叶片加工方式不同,数控机床叶片加工精度更加明显,效果也更加显著。虽然在小批量轴流泵叶片加工中,采用数控机床加工方式会增加成本费用,但是能够确保叶片质量,确保叶片型线、表面粗糙度、重量等具有高度的精确值,满足设计要求,能够提升轴流泵的运行性能。

2轴流泵叶片的数控加工

轴流泵叶片数控加工工艺能够提升加工效率,提高加工的精度,与常规的叶片精加工工艺相比,具有很大的优势。传统手工打磨方式,虽然在一定程度上降低了加工的成本,并且加工工艺简单,但是很难保证叶片的精度。手工打磨主要是依靠木模精度来控制叶片精度的,而木模容易发生变形,最大的变形甚至达到12毫米。采用传统的加工工艺,叶片的精度靠测量精度以及操作控制来实现,存在一定的误差性。在叶片曲面加工的过程中,传统的加工机床采用低速铣床,叶片的型线很难控制,特别是叶片较薄的位置,铣床在切削力作用下,会产生很大的振动,影响精度控制,并且容易形成加工死角,不能满足客户加工的具体要求。因此现阶段这种手工打磨加工工艺逐渐被淘汰,数控机床叶片加工工艺成为这一领域发展的必然趋势。

在利用数控机床加工轴流泵叶片的过程中,中心孔位置线划线是加工的关键。中心线主要是两端中心孔的连线,需要与叶片设计转动中心线相吻合。按照具体设计要求尺寸建立一个立体的靠模,多由多块样板构成,每一块样板模型工作面必须符合设计截面尺寸要求,然后通过切割机机床沿中心线进行切割加工,将靠板组装起来,形成立体的靠模。对于叶片工作面的加工,可以先加工好一面,然后翻面安装,最后对另一面进行加工,利用多个轴联动的方式加工。这种联动加工方式能够增加叶片两端的辅助支撑,提高叶片安装的刚性,保证安装质量,避免行刀过程中的振动影响其表面粗糙度的要求。

在轴流泵叶片数控加工过程中,加工的方式多种多样,加工速度、操作工艺等形式多样,可快可慢,并且切割刀位变化轨迹较为灵活。为了能够提高数控加工叶片的经济效益,需要根据客户的具体加工质量要求,选择最佳的数控加工程序与方式。。最后通过具体的加工程序,利用计算机实现数控加工。

3结束语

因篇幅问题不能全部显示,请点此查看更多更全内容