您的当前位置:首页正文

沥青的性质

2024-08-31 来源:年旅网
MechanicsofMaterials37(2005)1085–1100

www.elsevier.com/locate/mechmat

Onthemechanicalbehaviorofasphalt

J.MuraliKrishnana,K.R.Rajagopal

abb,*DepartmentofCivilEngineering,IndianInstituteofTechnologyMadras,Chennai600036,IndiaDepartmentofMechanicalEngineering,TexasA&MUniversity,CollegeStation,TX77840,USA

Received15June2004;receivedinrevisedform29July2004

Abstract

Knowledgeofthemechanicalandthermodynamicbehaviorofstraightrunasphaltisdesirableinviewofitsuseasabinderforpavementapplications.Thedifferentcomplexprocessesundergonebyasphaltconcretemixturessuchasheal-ing,aging,etc.canbeunderstoodmoreclearly,ifonehasabetterunderstandingoftheconstitutivebehaviorofasphalt.Theneedispressingastheuseofpolymer-modifiedasphaltasabinderhasincreasedinrecentyears.

MostofthestudiescarriedoutonconstitutivemodelingofasphaltmodelpureasphalteitherasaNewtonianfluidorasalinearviscoelasticfluidoverawiderangeoftemperatures.Thecomplexityrelatedtothestudyoftheconstitutivebehaviorofasphaltiscompoundedbythefactthatasphaltisamixtureofdifferentchemicalspeciessomeofwhichareamorphousandsomeofwhicharecrystallineinnature.Therelaxationmechanismsofasphaltarediversewithdifferentrelaxationmechanismsatdifferenttemperatures.Inthisstudy,weuseathermodynamicframeworkfortheconstitutivemodelingofasphaltandwemodelasphaltasamaterialwithmultiplerelaxationmechanisms.Thisframeworkrecog-nizesthefactthatmaterialslikeasphaltcanexistinmorethanonenaturalconfiguration(forinstance,stressfreecon-figuration).Weusetheexperimentaldataavailableintheliterature(Lethersich,W.,1942.Themechanicalbehaviourofbitumen.JournaloftheSocietyofChemicalIndustry61,101–108;Cheung,C.Y.,Cebon,D.,1997.Experimentalstudyofputebitumensintension,compression,andshear.JournalofRheology41(1),45–73)forasphaltfromdifferentsourcesanddemonstratetheefficacyofthemodel.Ó2005ElsevierLtd.Allrightsreserved.

Keywords:Asphalt;Constitutivemodeling;Viscoelasticity;Multiplenaturalconfigurations;Relaxation

*Correspondingauthor.

E-mailaddresses:jmk@iitm.ac.in(J.M.Krishnan),krajagopal@mengr.tamu.edu(K.R.Rajagopal).

0167-6636/$-seefrontmatterÓ2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.mechmat.2004.09.005

1086J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

1.Introduction

Asphaltisacomplexheterogeneousmixtureofhydrocarbonsusuallycollectedasabyproductoftherefiningprocessofcrudeoilinpetroleumrefin-eries.Asphalthasnumerousapplicationsandoneofitsmajorusesisasabinderforaggregatemate-rialsintheconstructionofhighwaysandrunways(MuraliKrishnanandRajagopal,2003).Themechanicalpropertiesofasphaltmixturesdependtoalargeextentonthetypeandquantityofas-phaltusedandhenceitisimperativethatonedevelopsabetterunderstandingofasphalt.Modi-fiersintheformofpolymer,crumbtirerubber,fill-ers,etc.arebeingaddedtoasphaltinanattempttoimproveitsmechanicalproperties.Aseachandeverymodifiercaninteractwithasphaltinawidelydifferentmanner,thecomplexityinmodel-ingtheconstitutivebehaviorofmodifiedasphaltisincreased.However,evenbeforeoneattemptsthemodelingofmodifiedasphalt,thebehaviorofstraight-runasphaltneedstobebetterunderstood.Inthisstudy,wefocusourattentiononmodelingthemechanicalbehaviorofasphaltforaspecifictemperaturerangeinwhichitsbehaviorispre-dominantlyviscoelastic.Thereasonformodelingthebehaviorofasphaltinthisspecificrangewillbecomeclearaswediscussindetailthenatureofasphaltandthevariouscomplexmanifestationsofitsbehavior.Severalexperimentalinvestigationshavebeencarriedoutonasphalt,however,mostoftheinformationthatisrequiredtomakereason-ableassumptionsconcerningthenatureofasphaltfortheentiretemperaturerangeofinterestisstilllacking.Forinstance,reliableinformationrelatedtotheglasstransitiontemperature,influenceoftemperatureandpressureontheapparentviscos-ity,influenceofdifferentsources/processingmeth-ods,etc.onthemechanicalandthermodynamicalbehaviorofasphaltarenotavailable.

Mostofthecurrentaswellearliermodelingat-temptswithregardtoasphalthavecharacterizedasphaltasalinearviscoelasticoraNewtonianfluidandhaveinvariablyusedassumptionssuchastime-temperaturesuperposition,andhavemod-eledthemasthermorheologicallysimplefluidswhichobeytheArrheniustyperateequations.Whilethesemodelshaveservedtheirpurposeincharacterizingdistressmeasurementsforasphaltconcretetoareasonabledegree,noneofthemcouldbeconsideredasrigorousconstitutivemod-elswiththeconstitutiveequationsreflectingthecomplexityofasphalt.Someoftheattemptsde-scribethebehaviorofasphaltinapiecemealfash-ionwithdifferentempiricalequationsdescribingthematerialbehaviorfordifferenttemperaturere-gimes.Asdetailsaboutthecomplexityofasphaltarebeingrevealedbytheuseoftoolssuchasgaschromatography,massspectrometry,differen-tialscanningcalorimetry,etc.,thereisaneedtodevelopconstitutivemodelswhichhavearigorousbasisandwhichhavetheabilitytotakeintoac-counttheinformationthatisgleanedasaconse-quenceofthesesophisticatedexperiments.

OneofthepopularmodelsfordescribingthemechanicalbehaviorofasphaltisduetoBurgers(1939).SaalandLabout(1940)usedamodifiedformofBurgersÕmodeltocharacterizeasphaltasamixedgel–solsandpredictedwithreasonableaccuracycertainexperimentalresults.Lethersich(1942)usedamodelbasedonamechanicalanalogconsistingoftwospringsandtwodashpotstocharacterizetheresponseofbitumenandobservedtheneedformorethanonerelaxationtimetodescribetheresponseofasphalt.Oneoftheearli-estattemptsinderivingafullythreedimensionaltheoryforratetypeviscoelasticfluidsisduetoFrohlichandSack(1946).Motivatedbytheexper-imentalresultsonbitumenofLethersich(1942),theydevelopedconstitutivemodelsforthevis-coelasticresponseofdispersions.VanderPoel(1954)assumedthatasphaltbehavedlikealinear-izedelasticmaterialatlowtemperaturesandforshortloadingtimesandbehavedlikeaNewtonianfluidforlongloadingtimesandsufficientlyhightemperatures.Whilehisnomographsusingpene-trationindexandsofteningpointmeasurementsofasphaltareverywidelyused,useofmeasureslikeÔstiffnessÕforcharacteringtheNewtonianresponseofasphaltisinappropriate.Brodnyanetal.(1960)andGaskinsetal.(1960)inaseriesofpapersinvestigatedtherheologicalcharacteris-ticsofasphalt.Theyusedtime-temperaturesuper-positionalongwiththeWilliam–Landel–Ferry

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–11001087

equations.UsingdeWaele–OstwaldÕsempiricalequations,MajidzadehandSchweyertriedtocharacterizethenon-Newtonianbehaviorofas-phalts(MajidzadehandSchweyer,1965).ThestructuraldegradationofasphaltwasmodeledbythemusingaEyringrateprocesstheory.Mostofthelaterstudiesconcerningasphaltwerededicatedtothedevelopmentofsimplelinearviscoelasticmodelsforasphaltanddatareductionwithrespecttosuchmodelswhichledtothedeterminationofthecomplexmodulus,phaseangle,etc.,obtainedbycorrelatingwithtestsonasphaltindifferentkindsofrheometers.Forinstance,theydevelopedrelationsbetweenthedynamicmodulusandphaseangle(JongepierandKuilman,1969),mastercurvesforthecomplexshearmoduluswithfre-quencyandtemperature(Dobson,1969),linearviscoelasticmodelsforthinbituminousfilmsintensionandcompression(DickinsonandWitt,1974).Thelimitationsofusingtheasumptionoftime-temperaturesuperpositionathightempera-tureswerereportedinthestudyofLesueuretal.(1996).Crystallizationandthenatureofasphalt-enespresentinasphaltwereascribed,byLesueuretal.,asthereasonsforthefailureoftimetemper-aturesuperpositionfordescribingthebehaviorofasphalt.Assumingasphalttobeadispersionofasphalteneparticlespeptizedbyresins,abimodalmodelwasdevelopedbytheseauthors.CheungandCebon(1997)usedthe‘‘Eyringplasticitymodel’’attemperaturesbelowglasstransitionwithatemperaturedependenceoftheArrheniustypeattemperaturesaboveglasstransition,andtheyalsoassumedthatasphaltobeyedtime-temperaturesuperpositionathightemperatures.

Inthefollowingsections,weelaborateonsomeoftheissuesrelatedtothemodelingofasphalt.Wethendetailathermodynamicframeworkformod-elingasphalt.Thisframeworktakesintoaccountthefactthatmaterialslikeasphaltcanexistindif-ferentnatural(stress-free)configurationsandithasbeensuccessfullyusedformodelingdiversematerialbehavior.Thefinalsectionofthispaperisrelatedtotestingtheefficacyofthepredictionsofthemodelbymakingacomparisonofthepre-dictionwithsomeoftheexperimentaldatathatisavailableintheliterature.

2.Issuesrelatedtomodelingofasphalt2.1.‘Multi-constitutent’natureofasphalt

Itisnotsurprisingthatdefiniteconclusionsregardingthemechanicalresponseofdifferentchemicalspeciesthatconstituteasphaltarenotyetinplace.Thefactthatwearedealingwithanorganicmaterialprocessedbytheearthoverseveralthousandyearsandsubjectedtoseveralmillioncyclesoftemperatureandpressureover-whelmsus.Themulti-constituentnatureofasphalthasbeenexploredtodifferentdegreesofsophisti-cationandtheproceduresrelatedtothedifferentfractionationschemesarestillevolving.Oneoftheearlieststudieswhichaddressedthemulti-con-stituentnatureofasphaltisduetoBoussingault(1837)andheclassifiedthebitumenofBechel-bronnintopetroleneandasphaltene.Nellensteyn(1924)suggestedcharacterizingasphaltasacolloidalsystemandsignificantinvestigationscon-cerningthecolloidalnatureofasphaltwerecon-ductedbyPfeifferandSaal(1940).Inasimilarveintoearlierattemptsthatwereconcernedwithunderstandingthemicro-structureofasphalt,DickieandYen(1967)conceptualizedthatasphalt-enesandresinsarerepeatingelementsofsimilarcompositionwiththedifferenceintheirchemicalstructureascribabletosolubilityandaromaticity.Therehavebeeninnumerablestudiesrelatedtofractionatingasphaltintodifferentdistinctchemi-calspeciesandthefractionationschemesduetoRostlerandWhite(1962)andCorbett(1969)deservespecialmentionhere.Alltheseschemesconcerningfractionatingasphaltintodifferentspeciesuselowboilingpointhydrocarbonsolventsanditiswellknownthatdifferentsolventsyielddifferentquantitiesofthefractions.Henceanyconclusionbasedonaspecificfractionationschemewillbearbitraryandprematureatthisstage(Goodrichetal.,1986).Inthelightoftheabovedevelopments,itisinterestingtoobserveheretheresearchconductedaspartoftheStrategicHighwayResearchProgram(SHRP)intheUnitedStatesofAmerica.TheSHRPresearcheffortcrit-icallyexaminedtheavailablecolloidalmodelsforasphaltinthelightoftheadvancesmadeinthe

1088J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

fieldofcolloidchemistryandcametotheconclu-sionthat‘‘asphaltcementisarelativelyhomoge-neousandrandomlydistributedcollectionofmoleculesdifferinginpolarityandmolecularsize’’(Petersenetal.,1994)and‘‘asphaltisasinglephasemixtureofmanydifferentpolarandnon-polarmolecules,allofwhichinteractwithoneanother’’(YoutcheffandJones,1994).TheyalsousedIonExchangeChromatographytoseparateasphaltintostrongandweakacids,strongandweakbases,neutralsandamphoterics—com-poundswithbothacidandbasefunctionalities.Thesefractionsalongwiththeparentasphaltwerealsotestedinrheometersinanattempttolinkthephysicalpropertiesofasphaltwiththevariouschemicalfractions.

Basedontheabovecitedstudies,somegeneralconclusionsaboutthenatureofasphaltcanbereached.Wecanconcludewithoutanylossofgen-eralitythatasphaltisamixtureofdifferentchem-icalspeciesandthedifferentmanifestationsofthemechanicalbehaviorofasphaltdependsontherel-ativeproportionsofeachofthesespecies.Thechangeofbehaviorofasphaltovertime,suchasaging,internalstructurechange,etc.,areduetotheinterconversionofthedifferentchemicalspe-ciesconstitutingasphalt.Theproportionofthesedifferentconstituentsaswellasthepotentialforchemicalinterconversiondependstoalargeextentonthesourceofasphalt(crudesource),thepro-cessingmethod,etc.Acompleteandrigorouscon-stitutivemodelshouldthenbeabletotakeintoaccountthemulti-constituentnatureofasphalt,theabilitytointerconvertaswellastheinfluenceofthecrudesourceonthemechanicalbehaviorofasphalt.Toconstructsuchamodelisadifficultbutachievabletaskusingtheframeworkwehaveinhand,butduetothepaucityofexperimentalinformationsuchanattemptmaynotbefeasibleatthemoment.Hence,inthisinvestigationweignoretheinfluenceofthedifferentchemicalspe-ciesthatconstituteasphaltasfarasitsmechanicalbehaviorisconcerned.2.2.Asphalttransitions

Themechanicalandthermodynamicbehaviorofasphaltisverysensitivetotheinfluenceoftem-perature.Pavementengineersandpavingtechnol-ogistsspecifydifferenttemperaturerangesforthevarioustasksrelatedtolayinganasphaltconcretepavement,forinstance,thetemperatureofasphaltfortransportandstorage,thetemperatureduringmixing,layingandcompactionoperations,etc.Severalstandardsrelatedtotherequirementsofapparentviscosityforalltheseoperationsarewelldocumentedintheliterature(AsphaltInstitute,1994).Thefactthatasphaltexhibitsdifferentmechanicalbehaviorasthetemperatureisprogres-sivelyincreased/decreasedfromaspecifictempera-tureiswellknown.Forinstance,startingfromalowtemperatureofapproximatelyÀ40°Candheatingasphaltatauniformtemperatureratetoatemperatureof+100°C,thefollowingtransi-tionsareobserved:glassysolid)viscoelasticsolid)viscoelasticfluid)Newtonianfluid.Thespecifictemperaturerangesforeachtypeofas-phaltexhibitingthesedifferenttypesofbehaviorisdifficulttopinpoint.Thisisduetothefactthatthenatureofasphaltcontinuestochangeasitissubjectedtodifferentcyclesofheatingandcooling.Hence,aparticulargradeofasphaltwhichexhibitsviscoelasticfluidbehaviorinatemperaturerangeofsay,20–40°C,mayshowthissamebehavioratamuchhighertemperaturerangeafteranum-berofcyclesoftemperatureand/orloading.Themainreasonforsuchachangeinitsresponseisthechangeintheinternalstructureofasphaltwithrespecttotime.

Differenttemperatureregimeshavebeenassoci-atedwiththedifferenttypesofmechanicalre-sponseofasphalt.Forinstance,Schweyer(1973)classifiedasphaltbehaviorinthefollowingman-ner:hightemperature(>60°C)—Newtonianfluid,near-transitionregion(between0and60°C)—vis-coelasticandfar-transitionrange(betweenglasstransitiontemperatureand0°C)—elastic.MoreinsightintothetransitorynatureofasphalthasbeengainedrecentlyduetothestudiesbyStormetal.(1996).Usingasphaltsfromthreedifferentsourcesandtestingthemoverawiderangeoftemperatures,Stormetal.,concludedthatatthetemperaturerangeof65–150°C,theseasphaltsbehavedasNewtonianfluidsandinthetempera-turerangeof25–65°C,thebehaviorwasessen-tiallyviscoelastic.Stormetal.,hypothesizedthat

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–11001089

thesolvationoftheasphalteneshellsbecomeslar-gerduringthistemperaturetransitionimpartinganewmicrostructureforasphalt.Thisisinadditiontothecrystallizationthatisgenerallyconsideredasbeingresponsibleforthistransitorybehavior.Henceasthetemperatureofanasphaltsampleisvariedfromaspecificvalue,theinternalstructurechangesgivingrisetodifferentmechanicalbehav-ior.Asdiscussedearlier,thisisduetothefactthatasphaltisinessenceamixtureofdifferentchemicalspecies,eachofthemexhibitingsolid-likeorfluid-likecharacteristicsasthetemperatureisvaried.Onecanalsoviewasphaltasamixtureofamor-phousandcrystallinephasesandtheinfluenceoftemperatureisinthemeltingofcrystallinephasesasthetemperatureisincreasedorintheformationofcrystallinephasesasthetemperatureisde-creased.Differentstudieshaveaddressedtheissuesrelatedtotheexistenceofamorphousandcrystal-linephasesinasphaltandtheirroleinthetransi-torynatureofasphalt.Mostofthesestudieshaveconcludedthatthelowtemperatureproper-tiesofasphaltbindersdependtoalargeextentontheamountofcrystallizablefractionsandtheglasstransitiontemperatureofasphalt.Forin-stance,increasedcrystallizedfractionsinasphaltleadtoreducedductility,reducedadhesiontothemineralaggregatesandincreasedbrittlenessatlowtemperatures.Unliketheliteratureconcerningpolymers,therehavebeenfewstudiesdevotedtounderstandingthecrystallizationkineticsofas-phalt.Someofthestudieswhichhaveconcernedthemselveswiththeroleofamorphousandcrystal-linefractionsofasphaltsincludeSmithetal.(1966),NoelandCorbett(1970),GiavariniandPochetti(1973),Albertetal.(1985),Claudyetal.(1992),Dalyetal.(1996),Netzel(1998),Michonetal.(1999),Massonetal.(2002),andEdwardsandRedelius(2003).

Thefactthatasphaltsexhibitmorethanoneglasstransitiontemperaturehasbeenrecordedindifferentexperimentalinvestigations(Chambrionetal.,1996;MassonandPolomark,2001;Massonetal.,2002).Fromaninitialcondition,differentcoolingratesinducedifferentinternalstructuralchangesinasphaltresultinginglasstransitionswhichareseveralordersapart.Massonandco-workers(2001,2002)investigatedthemicrostruc-tureofbitumenbymeansofmodulatedDSC(MDSC)andcametotheconclusionthatthede-greeofpolymerizationofasphaltsisoftheorder10andhenceasphaltcouldbeclassifiedasanoli-gomer.OnthebasisofMDSCofbitumenwithdif-ferentannealinghistory,thesestudiesconcludedthatasphalthadamesophasestructuresimilartothatencounteredinliquidcrystals.

Tosummarizetheabovediscussiononthetran-sitorynatureofasphalt,wecanconsiderasphaltasamixtureoftwocomplexamorphousphasesatroughly100°C.WehastentoaddherethatbyphasewemeanÔahomogeneous,physicallydistinctportionofmatterÕ.Asthetemperatureisreduced,onephaseofthismixturestartscrystallizingwhiletheotherremainsintheamorphousphase.Atthefieldservicetemperatureofinterest,asphaltcanbeassumedtoconsistofamorphousandcrystallinephases.Theviscoelasticbehaviorofasphaltthenisinfluencedbythevolume/massfractionsofthesedifferentphasesandthetendencyforthecrystal-linephasetoeitherdissolveorsolidifydependinguponwhetherthepavementtemperatureincreasesordecreases.Asofnow,therearenotenoughexperimentaldataavailablediscussingtheinter-conversionbetweenamorphousandcrystallinephasesasasphaltissubjectedtoawiderangeoftemperaturesandloading.Also,thecrystallizationkineticsofasphaltisnotwellunderstood.Forinstance,itisnotclearastowhatcausesthecrys-tallizationofsomefractionsofasphaltasthetem-peratureisreducedorwhattheinfluenceofthedifferentasphaltsourcesandprocessingmethodsareonthecrystallization.Wecanmakereasonableassumptionsontheconditionsfortheinitiationofcrystallizationandtheevolutionforthegrowthofthecrystallizedfractionsonlywhenwehaveanan-swertotheabovequestion.Inthisinvestigation,weassumethattheamorphousandcrystallinephasesgiverisetodifferentrelaxationmechanismsandhencewewillmodelasphaltwithmultiplerelaxationmechanisms.Weignoretheactualprocessofcrystallization/dissolutionofthecry-stallinephaseasthetemperatureisvariedandalsothepresenceofaninterfacialphasewhichcanbeconsideredtohavecharacteristicsthatliesinbetweenthatfortheamorphousandcrystallinephases.

1090J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

2.3.InternalstructuralchangeofasphaltwithtimeThecomplexresponseofasphaltisdirectlyre-latedtotheevolutionofitsinternalstructureintheabsenceofexternalforces.Theinternalstruc-tureofasphaltcandevelopandevolveifitisleftundisturbedataconstanttemperature.Thisinter-nalstructuredevelopsrapidlyatfirstandthenevolvesinanasymptoticmannerovertime.Essen-tially,thisevolutionofinternalstructurecancon-sistofareversibleandanirreversibleportion.Theirreversibleportioncanbeascribedtotheagingofasphaltthatresultsinthelossofchemicalspeciesduetotheevaporation/volatilizationanddependsonthetemperatureatwhichasphaltisheld.Italsodependsonthesourceofasphalt,theÔconsistencyÕofasphaltandthespecificfractionalcompositionofasphalt.ThemoreinterestingchangeintheinternalstructureisduetothereversibleportionandissimilartotheÔphysicalagingÕofpolymers(Hutchinson,1995).Thisspecificphenomenonisthechangeintheproperty(density,mechanicalre-sponsecharacteristics,dielectricproperties,etc.)ofasphaltwhenmaintainedataconstanttempera-tureforconsiderabletimeintheabsenceofanyexternalforcesandwithoutanyappreciablechangeinitschemicalcomposition.Thermaland/orexternalforcesactingonasphaltcanreverttheinternalstructuretotheoriginalconditioninwhichitexisted.Asofnow,twodifferentkindsofreversibleinternalstructuralchangehavebeenidentified.Thefirstoneoccursatroomtempera-tureandisanextremelyslowprocesstakingfromdaystoweekstoreachequilibriumconditions.Thesecondonewhichisobservedattemperaturesnearglasstransitionforasphaltismuchmorerapidandexperimentalinvestigationshavereportedthatittakesnormally1–2daysatthetemperaturerangeofÀ15toÀ35°C(LuandIsacsson,2000).HencethesimpleArrheniuskindofrelationshipbetweenratesandtemperaturesdonotapplyforasphalt,asaccordingtothisassumptiononewouldexpectfasterhardeningrateathighertemperatures(Mas-sonetal.,2002).Severalstudieshaveinvestigatedthereversibleinternalstructuralchangeofasphalt(seeforinstanceHubbardandReeve,1913;Hub-bardandPritchard,1916;TraxlerandSchweyer,1936;TraxlerandCoombs,1937;TraxlerandCoombs,1938;Pendleton,1943;Brownetal.,1957;Stinsky,1975;BahiaandAnderson,1992;Claudyetal.,1992;Huangetal.,1999;LuandIsacsson,2000).Thisreversiblechangeintheinter-nalstructurehasbeenidentifiedatroomtempera-tureasÔsterichardeningÕ(Brownetal.,1957)andatglasstransitiontemperatureasÔlowtemperaturephysicalhardeningÕ(BahiaandAnderson,1992).Theneedforsubjectingasphalttoidenticaltestconditionsbeforestartinganykindofexperimen-tationisduetothischangeininternalstructurethatoccurs,asanysuchdeviationmayresultinmeasurementofpropertiesofasphaltfromatran-sientconfigurationandnotfromitsnaturalconfig-uration.Forinstance,Traxlerandcoworkers(1936,1937)whilemeasuringtheviscosityofsev-eraldifferentasphaltsinfallingcoaxialcylinderviscometersnoticedthattheviscositiesofasphaltkeptintheviscometersforconsiderabletimeexhibitedincreasedviscosity.Traxleretal.,as-cribedthisstructureformationduetothetwo-phasenature(asphalteneandpetrolene)ofasphaltinwhichagradualisothermalsol–geltransforma-tionoccursasasphaltiskeptsteadyataspecifictemperature.SimilarresultswerereportedbyBrownetal.(1957)whochosetocallthisphenom-enonsterichardening.Brownetal.,attributedtheformationofinternalstructuretotheasphaltenefractionofasphalt.Thechangeintheinternalstructureofasphaltwhenheldforsufficienttimeneartheglasstransitiontemperaturehasbeencharacterizedasthatduetolowtemperaturephys-icalhardeningintheworkofBahiaandAnderson(1992).TheytriedtoexplainthisbehaviorduetothecollapseofÔfreevolumeÕasasphaltpassesthroughglasstransition(BahiaandAnderson,1992).Claudyetal.(1992)investigatedthelowtemperaturephysicalhardeningofasphaltandconcludedthatmolecularagglomerationsofcrys-tallinephasesatlowtemperaturecouldbeonerea-sonforthisbehavior.TheywerealsothefirsttoobservethatÔspinodaldecompositionÕaphenome-noninwhichaÔhomogeneousÕliquidseparatesintotwoliquidphasesasthematerialiscooled(Hilliard,1970)ischaracteristicofasphaltandisanotherpossiblereasonforthelowtemperaturephysicalhardeningofasphalt.Continuingontheselines,Massonetal.,ascribedafourstageinternal

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–11001091

structuraldevelopmentprocessforasphalt(Mas-sonetal.,2002).Eachofthefractionsofasphaltinfluenceintheirownway,dependingontheirtendencyforcrystallization,intheformationofreversibleinternalstructure(seeMassonetal.,2002).

Withinthecontextofwhatwehavediscussedintheearliersections,itisclearthat(a)themechan-icalbehaviorofasphaltinthetemperatureregimeofinterestisquitecomplicatedandnotwellunder-stood,(b)acomprehensivetheoryformodelingasphaltevenwiththelimitedinformationthatisavailableislackingand(c)eachandeveryfacetofthemodelingofthemechanicalbehaviorofas-phaltrequiresfusingideasfromphysicsandchem-istry.Arigorousframeworkformodelingasphaltwiththeabilitytotakeintoaccountthemicro-structuraldetailsandreflecttheminamacroscopicsense,islacking.Suchaframeworkshouldtakeintoaccountthefactthattheinternalstructureofasphaltevolveswithtime(inthepresenceorotherwiseofexternalinfluencessuchasload,tem-perature,etc.).Inthisstudywetakeafirststepinthisdirection.Wevisualizeasphaltasamaterialpossessingmultiplerelaxationmechanisms.Thesedifferentrelaxationtimescouldbeassociatedwiththeamorphousandcrystallinephasesandthetypeandchangesintheinternalstructure,i.e.,theinter-actionbetweenthephases.Weassumethateachoftheserelaxationmechanismscanbemodeledbyaratetypeviscoelasticfluidmodelwithmultiplesetsofnaturalconfigurations.Thekeyelementoftheframeworkthatweuseisthatabodycanexiststressfreeinnumerousnaturalconfigurations.Theunderlyingnaturalconfigurationscanchangeduringanyprocesstowhichthebodyissubjectedtoandthechangeoftheinternalmicrostructureiscapturedbythisevolutionofthenaturalconfigu-ration.Theresponseofthebodyfromthesenatu-ralconfigurationsiselasticwhensubjectedtoexternalforces.Thisparticularframeworkhasbeenusedformodelingdifferenttypesofphenom-ena,forinstance,multi-networktheory(Raja-gopalandWineman,1992),plasticity(RajagopalandSrinivasa,1998a,b),crystallizationofpoly-mers(RaoandRajagopal,2000;RaoandRajag-opal,2001;RaoandRajagopal,2002),solidtosolidphasetransition(RajagopalandSrinivasa,

1999),viscoelasticliquids(RajagopalandSrini-vasa,2000),anisotropicfluids(RajagopalandSrinivasa,2001),andgrowthofbiologicalmateri-als(HumphreyandRajagopal,2002;Raoetal.,2003).WerefertheinterestedreadertoMuraliKrishnanandRajagopal(2003,2004a,b)withregardtotheapplicationofthistheorytoasphaltmixtures.

3.Modelingofasphalt3.1.Preliminaries

ConsiderabodyBinaconfigurationjRðBÞ.Weshall,fortheeaseofnotationrefertothecon-figurationasjR.LetXdenoteatypicalpositionofamaterialpointinjR.Letjtbetheconfigurationatatimet,thenthemotionvjaparticleRassignstoeachpar-ticleinconfigurationjRintheconfigura-tionjtattimet,i.e.,x¼vjRðX;tÞ.

ð1Þ

ThedeformationgradientFjRisdefinedthroughFovjjR

R󰀂oX

.ð2ÞTheleftandrightCauchy-GreenstretchtensorsBjRandCjRaredefinedthroughBjR󰀂FjTRFjR;ð3ÞCjR󰀂FTjRFjR.

ð4Þ

Nowthebalanceofmassisgivenbyq

_þqdivv¼0;ð5Þ

whereqisthedensityandvisthevelocity.Exper-imentalstudiesonthecompressibilityofasphalthavepointedoutthatthechangeinthedensityisoftheorderofonly1.5%undernormaltempera-turesandpressures(MehrotraandSvrcek,1987)andhenceinthisstudy,weassumeasphalttobeincompressible.Inthelightoftheassumptionofincompressibility,thebalanceofmassreducestodivv¼0.

ð6ÞTheq󰀁balanceofov

ot

þðrvÞv󰀂linearmomentumis¼divTþqg;ð7Þ

1092J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

whereTistheCauchystressandgistheaccelera-tionduetogravity.Foranincompressiblemate-rial,theCauchystresstensorTreducestoT¼ÀpIþTE;

ð8Þ

wherepistheLagrangemultiplierduetothecon-straintofincompressibilityandTEistheconstitu-tivelydeterminedextrastress.Thebalanceofangularmomentumforabodyintheabsenceofinternalcouplesimpliesthatthestresstensorissymmetric.Intheformulationoftheconstitutiveequationsderivedinthisstudy,thereduced-dissi-pationequationisusedandforisothermalcondi-tionsitisgivenbyGreenandNaghdi(1977),RajagopalandSrinivasa(1999)TÁLÀqw

_¼qhf󰀂nP0;ð9Þ

wherewistheHelmholtzpotential,fistherateof

entropyproductionandnistherateofdissipation.Inthepresentattemptweignoreradiation(MuraliKrishnanandRajagopal,2003).

3.2.Modelingasphaltwithmultiplerelaxationmechanisms

Wemodelasphaltasaratetypeviscoelasticfluid.WefollowthemethodologyofRajagopalandSrinivasa(2000)fordevelopingconstitutiverelationsforthestress.ReferringtoFig.1,jRisareferenceconfiguration,jc(t)istheconfigurationcurrentlyoccupiedbythematerialandjp(t)isthepreferrednaturalconfigurationoncethetractionsonjc(t)areremoved.Itispossibleforthematerialtopossessmorethanonenaturalconfigurationandweassumethatwecanassociatethenaturalconfigurationswithdifferentrelaxationmecha-nisms.Letusforthesakeofdiscussionassumethatwehaveanasphaltsampleat100°Candwecoolthesampletoroomtemperatureataratesuchthatthecrystallinephasedevelops.Ifweleavethissampleatroomtemperatureforsufficienttime,therelaxationofasphaltwillbeduetothetwodiffer-entphases,theamorphousandcrystallinephases.Duetothefactthattheinternalstructureofas-phaltevolvesoveraperiodoftime(Ôstericharden-ingÕ),therecanbeonemorerelaxationtimeassociatedwiththischangeandthisrelaxation

FκRκc(t)Fκp(t)κRGκp(t)Fig.1.Naturalconfigurationsassociatedwithasphalt.timewillbeoftheorderofdays.Hence,thecon-figurationjp(t)inthiscasecanbethoughtofbeingmadeupofabodywithwhichwecanassociatethreedifferentrelaxationtimes,onepertainingtotheamorphousphase,onetothecrystallinephaseandtheotherthatisrelatedtothetimescaleofthesterichardeningatroomtemperatures.Thesamematerialcanexhibitdifferentrelaxationmecha-nismsifitiscooledtoneartheglasstransitiontemperature.Totakeintoaccountallthesepossi-bilities,weassumethatasphaltpossessesmultiplerelaxationmechanisms,eachofthemtriggeredbyadifferentphysical/chemicalprocess.Wealsoas-sumethattheresponsefromeachofthesenaturalconfigurationsiselastic.ReferringtoFig.1,FjRdenotesthemappingbetweenthetangentspaceassociatedwithjR,atapointinthereferencecon-figurationtothetangentspaceassociatedwiththesamematerialpointinjc(t).FjpmappingbetweenthetangentspaceiðtÞreferstotheassociatedwiththeconfigurationjpiðtÞ,atamaterialpointtothetangentspaceassociatedwiththecurrentconfigurationjc(t)atthesamepoint.HeretheindexÔiÕrangesfromÔ1,...,nÕwhereÔnÕsignifiesthenumberofrelaxationmechanisms.WealsodefinethefollowingmappingGibetweentheappropriatetangentspacesofjRandjpiðtÞ,

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

1093

Gi󰀂Fjj1

R!pðtÞ¼FÀjpðtÞFjR;

i¼1;2;...;n.ð10Þ

i

WedefinethevelocitygradientLjpofLDiðtÞandthesym-metricpartjpiðtÞ;jpiðtÞasfollows:Ljp_iðtÞ¼GiGÀ1i

;D1󰀃jpiðtÞ¼

2

L󰀄jT

piðtÞþLjpðtÞ;i¼1;2;...;n.ð11Þ

iNow,onecanviewthetensorsBjpinformationaboutthedeformationsiðtÞascontainingoftheamor-phousandcrystallinephasesaswellasthespecificinternalstructuralchangesthattakeplaceasthematerialisunloaded.Also,astherecentstudiesofMassonandPolomark(2001),Massonetal.(2002)havesuggestedasphaltcouldhaveamicro-structuresimilartoliquidcrystals,onecouldalsomodelasphaltasananisotropicfluid.Inthatcase,howthestoredenergydependsonthetensorBjpinformationabouttheanisotropyofas-iðtÞ,containsphalt,ofcourseinamacroscopicsense.Nowitcanbeshownthat(seeRajagopalandSrinivasa,2000fordetails)

O

BjpiðtÞ

󰀂B_jpiðtÞÀLBjpiðtÞÀBjpiðtÞLT¼À2FjTpiðtÞDjpiðtÞFjpðtÞ;

i¼1;2;...;n;ð12Þ

i

wheretheinvertedtriangleistheÔupperconvectedÕ

Oldroydderivativeandthesuperposeddotsigni-fiesthematerialtimederivative.Sincewehaveas-sumedasphalttobeincompressible,themotionsassociatedwiththenaturalconfigurationsareiso-choricandhencetrðDjpiðtÞÞ¼0;

i¼1;2;...;n.

ð13Þ

WeassumethefollowingformfortheHelmholtzpotential:w¼wðIi;IIiÞ;i¼1;2;...;n;

ð14Þ

whereIi¼trðBjpiðtÞÞ;IIi¼

trðB2jpiðtÞÞ;

i¼1;2;...;n.

ð15Þ

Sincethematerialisassumedtobeisotropic,theconfigurationsjpiðtÞcanbechosensuchthatFjpiðtÞ¼VjpiðtÞ;

i¼1;2;...;n;

ð16Þ

whereVjpiðtÞ;i¼1;2aretherightstretchtensors

inthepolardecomposition.Wealsoassumethefollowingformfortherateofdissipation:n¼nðBjpiðtÞ;DjpiðtÞÞ;

i¼1;2;...;n.

ð17Þ

Also,wecanassumethatformotionswherethenaturalconfigurationsdonotchange,therateofdissipationiszeroandhence,n¼nðBjpiðtÞ;0Þ¼0;

i¼1;2;...;n.

ð18Þ

SubstitutingtheformfortheHelmholtzpotential(Eq.(14))intothereducedenergydissipationequation(Eq.(9)),andusingEqs.(12)and(16),we\"get,TÀXn2q󰀅ow󰀆#i¼1

oIB2owjB2ipiðtÞþoIIijpiðtÞÁD

þ

Xn󰀁2q󰀅owBowj2󰀆󰀂piðtÞþ2Bjpi¼1

oIðtÞÁDjioIIiipiðtÞ¼nP0.

ð19Þ

Sincewearelookingatformssufficienttosatisfy

theaboveequation,itisreasonabletoassumethatthestressisgivenby

T¼Àp1þXn2q󰀅owBowj2

󰀆piðtÞþ2Bjpi¼1oIioIIiðtÞ.ð20Þ

iFromtheformsassumedfortheHelmholtzpoten-tialandtherateofdissipation,itisclearthat

X

nTiÁDjpiðtÞ¼nP0;ð21Þ

i¼1

whereTiisgivenby

T󰀅owowi¼2qoIBjiðtÞþ22

󰀆oIIBp;

ipijiðtÞ

i¼1;2;...;n.

ð22Þ

Eq.(21)placesrestrictionsonthetensors

DjpiðtÞ;i¼1;2;...;n.FollowingRajagopalandSrinivasa(2000),weassumethattheactualvaluesofDjpiðtÞ;i¼1;2;...;nchosensatisfytherestric-tionsgivenbyEqs.(21)and(13)alsocorrespondstothemaximumrateofdissipation.ThisiscarriedoutbyextremizingtherateofdissipationusingthemethodofLagrangemultiplierssubjecttothe

1094J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

constraintsgivenbyEqs.(21)and(13)(fordetailsthereadersarereferredtoRajagopalandSrinivasa(2000)).Fromtheaboveprocedure,wegetTon

i¼c1i

oDÀc2i1¼0;i¼1;2;...;n;

ð23Þ

jpiðtÞ

wherec1iandc2iareLagrangemultipliers.Nowforthespecificproblemunderconsideration,weneedtoprescribeconstitutiveassumptionsfortheHelmholtzpotentialandtherateofdissipation.WeassumethattheHelmholtzpotentialisofthefollowingform:

w¼1Xn2qliðIiÀ3Þ;ð24Þ

i¼1whichimpliesthattheinstantaneouselasticre-sponseisthatofaneo-Hookeanelasticsolid.Wealsoassumethattherateofdissipationisofthefollowingform:

X

n󰀃g󰀄iDjpiðtÞÁBjpiðtÞDjpiðtÞþ󰀁giDÁD.ð25Þi¼1

Intheaboveequation,listheshearmodulusand

g,󰀁garetheviscosities.SubstitutingEqs.(24)and(25)intoEq.(9)andsimplifyingusingEqs.(16),(12),wegetthefollowingrepresentationforstress:

T¼Àp1þ

X

n󰀃lD󰀄iBjpiðtÞþ󰀁gi;ð26Þi¼1

andthefollowingevolutionequationforBjpiðtÞ:1O\"#

2Bl3jpiðtÞ¼ig1ÀBjpitrðBÀ1iðtÞ;jpi

ðtÞ

Þi¼1;2;...;n.ð27Þ

Thiscompletesthedevelopmentofthemodelforasphalt.Intheremainingpart,weusethismodelandexaminetheefficacyofitspredictionsvis-a-vissomeoftheexperimentalresultsavailableintheliterature.4.Applications

Inthissection,weinvestigatetheapplicationtotwodifferentkindsofdeformations.Thefirstisre-latedtoaconstantextensionratetestandthesec-ondisrelatedtoaconstanttensilestresstest.

Assumingthedeformationtobehomogeneous,thekinematicsofdeformationincylindricalpolarcoordinatesystemforboththesecasesare,

r¼pffiffiffiffiffiffiffiffiffi11

KðtÞR;h¼pffiffiffiffiffiffiffiffiffiKðtÞH;z¼KðtÞZ.

ð28ÞHereapointinthereferenceconfigurationisde-notedby(R,H,Z)andthesamepointinthecur-rentconfigurationisdenotedby(r,h,z)andK(t)denotesthestretchalongtheZdirection.Thedeformation gradientforthismotion!

isgivenby

F11

jR¼diagpffiffiffiffiffiffiffiffiffiKðtÞ;pffiffiffiffiffiffiffiffiffiKðtÞ;KðtÞ;ð29Þ

andthusB¼diag

󰀅

11j2

󰀆R

KðtÞ;KðtÞ;KðtÞ.ð30Þ

The󰀃components󰀄ofBjpðtÞareassumedtobe

diag1BðtÞ;1BðtÞ;B2ðtÞ.Thisassumptionisconsistentwiththestipulationthatthestress-freestateforthematerialisachievedviaamotionoftheformgivenbyEq.(28).

Forthecurrentproblem,weassumethatas-phalthasasinglerelaxationtime.Thisessentiallymeansthatthereisasinglenaturalconfigurationassociatedwithasphalt.Theconstitutivemodeldetailedintheearliersectionisverygeneralinnat-ureandtakesintoaccountthedifferentrelaxationmechanismspossibleforasphalt.However,sincethedetailsrelatedtothevolume/massfractionsofamorphousandcrystallinephasesaswellasthespecificinfluenceoftheinternalstructurechangesuchassterichardeningonthemechanicalbehaviorofasphaltarenotavailablewithregardtotheexperimentalstudiesthatweshalluseforcorrelation,itisproposedtosolvetheproblemre-latedtotheabovetwodeformationswithasinglerelaxationtime.Forthecasewithasinglerelaxa-tiontime,theconstitutiveequationisgivenbyT¼Àp1þlBjpðtÞþ󰀁gD;

ð31Þ

andtheevolutionequationforthenaturalconfig-urationisgiven1Ol2by

3

3

2BjpðtÞ¼g4tr󰀃B

À1󰀄1ÀBjpðtÞ5.ð32ÞjpðtÞ

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–11001095

Fortheproblemunderconsideration,thestressesinthelateraldirectionsarezeroandhencethestressinthezdirectionisgivenasfollows:gðDzzÀDrrÞ.Tzz¼lðBzzÀBrrÞþ󰀁

ð33Þ

Theevolutionequationforthenaturalconfigura-tioninthezdirectionisgivenby󰀁󰀂

oBzzoBzz2l2BzzðBrrÀBzzÞ

þvzz¼þ2LzzBzz.

g2BzzþBrrotoz

ð34Þ

4.1.Constantextensionrateexperiments

Intheconstantextensionrateexperiments,nor-mallyaÔdumb-bellÕshapedspecimenismounted

betweenthecross-headsandthecross-headsarethenpulledataconstantspeed.Insuchacase,thestretchisgivenasfollows:KðtÞ¼1þKt;

ð35Þ

whereKisaconstant.Thevelocitygradientforthismotionisgivenby

󰀂

À1KÀ1KK

;;.L¼diag

21þKt21þKt1þKt

󰀁

ð36Þ

Thevelocitygradient,LisdiagonalandhenceDthesymmetricpartofthevelocitygradientisthesameasL.Also,weassumethefollowingformfortheviscosities:

h󰀃󰀄mi

g¼g0NtrBjpðtÞÀ3þ1expðbÞ;ð37Þ󰀁g¼󰀁g0.

ð38Þ

Theinitialconditionforthismotionisgivenasfollows:BjpðtÞ¼1;

fort¼0.

ð39Þ

Withthisinitialcondition,Eq.(34)issolvedandthestressintheasphaltspecimenisgivenby(33).ExperimentalstudiesonbitumenconductedbyCheungandCebon(1997)arecomparedwiththepredictionsofthemodelinFig.2anditisseenthatthemodelpredictstheexperimentalobserva-tionsreasonablywell.

Constant extension rate test for Bitumen at 10 °C2.00 X 1061.80 X 1061.60 X 1061.40 X 106ModelNominal Stress (Pa)1.20 X 1061.00 X 106Experiment0.2/s0.1/s0.05/s0.02/s0.01/s8.00 X 1056.00 X 1054.00 X 1052.00 X 100.00 X 105000.10.20.30.40.50.6Nominal StrainFig.2.Comparisonoftheconstantextensionratetestsat10°CofbitumenB1reportedinCheungandCebon(1997)withmodelpredictions.Themodelparametersusedarel=5MPa,g0=6.2MPas,󰀁g0¼0.75MPas,N=0.75,m=0.5,b=0.55.1096J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

4.2.Tensilecreepexperiments

Intensilecreeptesting,atensileforceisappliedÔinstantaneouslyÕtothespecimenandmaintainedconstantuntiltheendofthetest.Onevariationofthistestisthatinwhichtheforceisreleasedattheendofaspecifictimeperiodandtherelaxa-tionofthematerialismeasured.Thevelocitygra-dientforthismotionisgivenby

󰀁__K_󰀂1K1K

L¼diagÀ;À;.ð40Þ

2K2KKDuetothefactthattheasphaltusedinthetensile

creepexperiments(blownbitumen)iscompletelydifferentwhencomparedwiththeasphaltusedintheconstantextensionratetesting(steamdistilledbitumen),theformfortheviscositygchosenisdif-ferentandisgivenas

h󰀃󰀄mi

ð41Þg¼g0NtrBjpðtÞÀ3þ1.

TheinitialconditionsforthismotionisBzz¼Kð0Þ;Brr¼Bhh¼

1

.Kð0Þ

2

ð42Þð43Þ

Theappropriateinitialconditionsherearearrivedatbyrecognizingthefactthataninstan-taneousapplicationofforceelicitsanelasticresponsefromthematerialwiththevalueofstretchattimet=0beingK(0).AsbeforeEq.(34)issolvedinconjunctionwithEq.(33)withthevelocitygradientgivenbyEq.(40).

Figs.3–5showthepredictionsofthemodelandthecomparisonoftheresultswiththeexperimen-talobservationsofLethersich(1942).ItistobepointedoutherethattheseclassicalexperimentalobservationsofLethersich(1942)werethemotiva-tionforthedevelopmentofafullythreedimen-sionaltheoryforratetypeviscoelasticfluidsbyFrohlichandSack(1946).

Extension/time curves for Bitumen25Temperature 30°CModel19.8 g/cm2 - Experiment35 g/cm2 - Experiment20Extension in % 151050010203040506070Time in daysFig.3.Comparisonofthetensilecreeptestsat30°Cofblownbitumenno.2reportedinLethersich(1942)withmodelpredictions.Themodelparametersusedarel=11.2MPa,g0=1.6416·106MPas,󰀁g0¼9.936Â104MPas,N=10,m=3.J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–11001097

Extension/time curves for Bitumen25Temperature 35°CModel12.8 g/cm2 - Experiment25 g/cm2 - Experiment20Extension in %151050010203040506070Time in daysFig.4.Comparisonofthetensilecreeptestsat35°Cofblownbitumenno.2reportedinLethersich(1942)withmodelpredictions.Theg0¼9.936Â104MPas,N=10,m=3.modelparametersusedarel=7.8MPa,g0=1.296·106MPas,󰀁Extension/time curves for Bitumen25Temperature 40°CModel8.45 g/cm2 - Experiment20.8 g/cm2 - Experiment20Extension in %151050010203040506070Time in daysFig.5.Comparisonofthetensilecreeptestsat40°Cofblownbitumenno.2reportedinLethersich(1942)withmodelpredictions.Themodelparametersusedarel=6.2MPa,g0=6.696·105MPas,󰀁g0¼9.936Â104MPas,N=10,m=3.1098J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

5.Conclusions

Inthispaper,wehavedevelopedaframeworkfortheconstitutivemodelingofstraightrunas-phalt.Theconstitutivemodelisdevelopedbasedontheframeworkofevolvingnaturalconfigura-tions.BychoosingspecificformsfortheHelm-holtzpotential,rateofdissipationandusingthereducedenergy-dissipationequationandmaximi-zationoftherateofdissipation,wehaveobtainedconstitutiverelationsforthestressandtheevolu-tionequationsfortheunderlyingnaturalconfigu-rations.Wehaveassumedasphalttohavemultiplerelaxationmechanismsandincorporatedeachoftheserelaxationmechanismsintoaratetypevisco-elasticfluidmodel.Weillustratedtheefficacyofthemodelbycomparingitspredictionswithexper-imentalobservationsoftwodistinctasphalts.Therecentuseofmodifierstoasphaltintheformoffillers,polymers,etc.haveincreasedthecomplexityofthemechanicalandthermodynamicbehaviorofasphalt.Theinfluenceofthesemodifi-ersontheinitiationofcrystallization/dissolutionofdifferentfractionsinasphaltaswellasonthechangeinthetransitorybehaviorneedstobechar-acterizedclearly.Also,theagingofasphaltandtheaddedchangeinthebehaviorduetotheintercon-versionofdifferentchemicalspeciesthatconstituteasphaltneedstobetakenintoaccountifoneisinterestedinpredictingthelongtermbehaviorofasphaltpavements.Theframeworkthatwehaveusedinthisstudycomesinhandyformodelingsuchprocessesandthisstudyisthefirststepinthedirectionofdevelopingacomprehensivether-modynamicframeworkformodelingasphalt.

Acknowledgment

WethanktheNationalScienceFoundationforitssupportofthiswork.

References

Albert,M.,Bosselet,F.,Claudy,P.,Letoffe,J.M.,Lopez,E.,

Damin,B.,Neff,B.,1985.Comportementthermiquedesbitumesroutiers.Determinationdutauxdefractions

cristalliseesparanalysecalorimetriquedifferentielle.Ther-mochimicaActa84,101–110.

AsphaltInstitute,1994.PerformanceGradedAsphaltBinder

SpecificationandTesting.SuperpaveSeriesNo.1(SP-1).Bahia,H.U.,Anderson,D.A.,1992.Physicalhardeningof

pavinggradeasphaltsasrelatedtocompositionalcharac-teristics.Preprints,DivisionofFuelChemistry,AmericanChemicalSociety37(3),1397–1407.

Boussingault,M.,1837.Memoiresurlacompositiondes

bitumes.AnnalesdeChimieetdePhysiqueLXIV,141–151.Brodnyan,J.G.,Gaskins,F.H.,Philippoff,W.,Thelen,E.,

1960.TherheologyofasphaltIII,dynamicmechanicalpropertiesofasphalt.TransactionsoftheSocietyofRheologyIV,279–296.

Brown,A.B.,Sparks,J.W.,Smith,F.M.,1957.Sterichardening

ofasphalts.ProceedingsoftheAssociationofAsphaltPavingTechnologists26,486–494.

Burgers,J.M.,1939.Mechanicalconsiderations—modelsys-tems—phenomenologicaltheoriesofrelaxationandofviscosity.In:FirstReportonViscosityandPlasticity,seconded.NordemannPublishingCompany,Inc.,NewYork,PreparedbythecommitteeforthestudyofviscosityoftheacademyofsciencesatAmsterdam.

Chambrion,P.,Bertau,R.,Ehrburger,P.,1996.Characteriza-tionofbitumenbydifferentialscanningcalorimetry.Fuel75(2),144–148.

Cheung,C.Y.,Cebon,D.,1997.Experimentalstudyofpure

bitumensintension,compression,andshear.JournalofRheology41(1),45–73.

Claudy,P.,Le

´toffe´,J.M.,King,G.N.,Planche,J.P.,1992.Characterizationofasphaltscementsbythermomicroscopyanddifferentialscanningcalorimetry:correlationtoclassicphysicalproperties.FuelScienceandTechnologyInterna-tional10(4–6),735–765.

Claudy,P.,Letoffe,J.M.,Rondelez,F.,Germanaud,L.,King,

G.,Planche,J.P.,1992.Anewinterpretationoftime-dependentphysicalhardeninginasphaltsbasedondscandopticalthermoanalysis.Preprints,DivisionofFuelChem-istry,AmericanChemicalSociety37(3),1408–1426.

Corbett,L.W.,1969.Compositionofasphaltbasedongeneric

fractionation,usingsolventdeasphaltening,elution-adsorp-tionchromotography,anddensimetriccharacterization.AnalyticalChemistry41,576–579.

Daly,W.H.,Qiu,Z.,Negulescu,I.,1996.Differentialscanning

calorimetrystudyofasphaltcrystallinity.TransportationResearchRecord1535,54–60.

Dickie,J.P.,Yen,T.F.,1967.Macrostructureofasphaltic

fractionbyvariousinstrumentalmethods.AnalyticalChemistry39(14),1847–1852.

Dickinson,E.J.,Witt,H.P.,1974.Thedynamicshearmodulus

ofpavingasphaltsasafunctionoffrequency.TransactionsoftheSocietyofRheology18(4),591–606.

Dobson,G.R.,1969.Thedynamicmechanicalpropertiesof

bitumen.ProceedingsoftheAssociationofAsphaltPavingTechnologists38,123–139.

Edwards,Y.,Redelius,P.,2003.Rheologicaleffectsofwaxesin

bitumen.EnergyandFuels17(3),511–520.

J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

1099

Frohlich,H.,Sack,R.,1946.Theoryoftherheological

propertiesofdispersions.ProceedingsoftheRoyalSocietyofLondon,SeriesA,MathematicalandPhysicalSciences185(April),415–430.

Gaskins,F.H.,Brodnyan,J.G.,Philippoff,W.,Thelen,E.,

1960.TherheologyofasphaltII,flowcharacteristicsofasphalt.TransactionsoftheSocietyofRheologyIV,265–278.

Giavarini,C.,Pochetti,F.,1973.Characterizationofpetroleum

productsbyDSCanalysis.JournalofThermalAnalysis5,83–94.

Goodrich,J.L.,Goodrich,J.E.,Kari,W.J.,1986.Asphalt

compositiontests:theirapplicationandrelationtofieldperformance.TransportationResearchRecord1096,146–167.

Green,A.E.,Naghdi,P.M.,1977.Onthermodynamicsandthe

natureofthesecondlaw.ProceedingsoftheRoyalSocietyofLondonA357,253–270.

Hilliard,J.E.,1970.Spinodaldecomposition.in:PhaseTrans-formations.PapersPresentedataSeminaroftheAmericanSocietyofMetals,October,1968,AmericanSocietyforMetals,MetalsPark,Ohio,USA,pp.497–560.

Huang,S-C.,Robertson,R.E.,Branthaver,J.F.,McKay,J.F.,

1999.Studyofsterichardeningeffectofthinasphaltfilmsinpresenceofaggregatesurface.TransportationResearchRecord1661,15–21.

Hubbard,P.,Pritchard,F.P.,1916.Effectofcontrollable

variablesuponthepenetrationtestforasphaltsandasphaltscements.JournalofAgriculturalResearchV(17),805–818.Hubbard,P.,Reeve,C.S.,1913.Theeffectofexposureon

bitumens.IndustrialandEngineeringChemistry5(1),15–18.

Humphrey,J.D.,Rajagopal,K.R.,2002.Aconstrainedmixture

modelforgrowthandremodelingofsofttissues.Mathe-maticalModelsandMethodsinAppliedSciences12,1–24.Hutchinson,J.M.,1995.Physicalagingofpolymers.Progressin

PolymerScience20,703–760.

Jongepier,R.,Kuilman,B.,1969.Characteristicsofthe

rheologyofbitumens.ProceedingsoftheAssociationofAsphaltPavingTechnologists38,98–122.

Lesueur,D.,Gerard,J.-F.,Claudy,P.,Letoffe,J.-M.,Planche,

J.-P.,Martin,D.,1996.Astructure-relatedmodeltodescribeasphaltlinearviscoelasticity.JournalofRheology40(5),813–836.

Lethersich,W.,1942.Themechanicalbehaviorofbitumen.

JournaloftheSocietyofChemicalIndustry61,101–108.Lu,X.,Isacsson,U.,2000.Laboratorystudyonthelow

temperaturephysicalhardeningofconventionalandpolymermodifiedbitumens.ConstructionandBuildingMaterials14,79–88.

Majidzadeh,K.,Schweyer,H.E.,1965.Non-Newtonianbehav-iorofasphaltcements.ProceedingsoftheAssociationofAsphaltPavingTechnologists34,20–44.

Masson,J.-F.,Polomark,G.M.,2001.Bitumenmicrostructure

bymodulateddifferentialscanningcalorimetry.Thermochi-micaActa374,105–114.

Masson,J.-F.,Polomark,G.M.,Collins,P.,2002.Time-dependentmicrostructureofbitumenanditsfractionbymodulateddifferentialscanningcalorimetry.EnergyandFuels16,470–476.

Mehrotra,A.K.,Svrcek,W.Y.,1987.Viscosityofcompressedcoldlakebitumen.TheCanadianJournalofChemicalEngineering65(August),672–675.

Michon,L.C.,Netzel,D.A.,Turner,T.F.,Martin,D.,Planche,J.-P.,1999.A13CNMRandDSCstudyoftheamorphousandcrystallinephasesinasphalt.EnergyandFuels13(3),602–610.

MuraliKrishnan,J.,Rajagopal,K.R.,2003.Reviewoftheusesandmodelingofbitumenfromancienttomoderntimes.AppliedMechanicsReview56(2),149–214.

MuraliKrishnan,J.,Rajagopal,K.R.,2004a.Athermody-namicframeworkforconstitutivemodelingofasphaltconcrete—theoryandapplications.ASCEJournalofMate-rialsinCivilEngineering16(2),155–166.

MuraliKrishnan,J.,Rajagopal,K.R.,2004b.Triaxialtestingandstressrelaxationofasphaltconcrete.MechanicsofMaterials36(9),849–864.

Nellensteyn,F.J.,1924.Theconstitutionofasphalt.TheJournaloftheInstitutionofPetroleumTechnologists10,311–325.

Netzel,D.A.,1998.Lowtemperaturestudiesofamorphous,interfacial,andcrystallinephasesinasphaltsusingsolid-state13Cnuclearmagneticresonance.TransportationResearchRecord1638,23–30.

Noel,F.,Corbett,L.W.,1970.Astudyofthecrystallinephasesinasphalt.JournaloftheInstituteofPetroleum56(551),261–268.

Pendleton,W.W.,1943.Thepenetrometermethodfordeter-miningtheflowpropertiesofhighviscosityfluids.JournalofAppliedPhysics14(April),170–180.

Petersen,J.C.,Robertson,R.E.,Branthaver,P.M.,Harnsber-ger,J.F.,Duvall,J.J.,Kim,S.S.,Anderson,D.A.,Chris-tiansen,D.W.,Bahia,H.U.,1994.Bindercharacterizationandevaluation:Volume1.ReportSHRP-A-367,StrategicHighwayResearchProgram,Washington,DC,USA.

Pfeiffer,J.Ph.,Saal,R.N.J.,1940.Asphalticbitumenascolloidsystem.TheJournalofPhysicalChemistry44(2),139–149.Rajagopal,K.R.,Srinivasa,A.R.,1998a.Mechanicsoftheinelasticbehaviorofmaterials—PartII:inelasticresponse.InternationalJournalofPlasticity14,969–995.

Rajagopal,K.R.,Srinivasa,A.R.,1998b.Mechanicsoftheinelasticbehaviorofmaterials—PartI,theoreticalunder-pinnings.InternationalJournalofPlasticity14,945–967.Rajagopal,K.R.,Srinivasa,A.R.,1999.Onthethermodynam-icsofshapememorywires.ZAMP50,459–496.

Rajagopal,K.R.,Srinivasa,A.R.,2000.Athermodynamicframeworkforratetypefluidmodels.JournalofNon-NewtonianFluidMechanics88,207–227.

Rajagopal,K.R.,Srinivasa,A.R.,2001.Modelinganisotropicfluidswithintheframeworkofbodieswithmultiplenaturalconfigurations.JournalofNon-NewtonianFluidMechan-ics88,207–227.

1100J.M.Krishnan,K.R.Rajagopal/MechanicsofMaterials37(2005)1085–1100

Rajagopal,K.R.,Wineman,A.S.,1992.Aconstitutiveequation

fornonlinearsolidswhichundergodeformationinducedmicro-structuralchanges.InternationalJournalofPlasticity8,385–395.

Rao,I.J.,Rajagopal,K.R.,2000.Phenomenologicalmodeling

ofpolymercrystallizationusingthenotionofmultiplenat-uralconfigurations.Interfacesandfreeboundaries2,73–94.Rao,I.J.,Rajagopal,K.R.,2001.Astudyofstrain-induced

crystallizationofpolymers.InternationalJournalofSolidsandStructures38,1149–1167.

Rao,I.J.,Rajagopal,K.R.,2002.Athermodynamicframework

forthestudyofcrystallizationinpolymers.ZAMP53,365–406.

Rao,I.J.,Humphrey,J.D.,Rajagopal,K.R.,2003.Biological

growthandremodeling:auniaxialexamplewithpossibleapplicationtotendonsandligaments.ComputerModelinginEngineeringandSciences4,439–456.

Rostler,F.S.,White,R.M.,1962.Compositionandchangesin

compositionofhighwayasphalts,85–100penetrationgrade.ProceedingsoftheAssociationofAsphaltPavingTechnol-ogists31,35–89.

Saal,R.N.J.,Labout,J.W.A.,1940.Rheologicalpropertiesof

asphalticbitumens.TheJournalofPhysicalChemistry44(2),149–165.

Schweyer,H.E.,1973.Asphaltrheologyinthenear-transition

temperaturerange.HighwayResearchRecord468,1–15.Smith,C.D.,Schuetz,C.C.,Hodgson,R.S.,1966.Relationship

betweenchemicalstructuresandweatherabilityofcoating

asphaltsasshownbyinfraredabsorptionspectroscopy.IndustrialandEngineeringChemistryProductResearchandDevelopment5(2),153–161.

Stinsky,F.,1975.Thixotropiedesbitumenroutiers.in:Takacs,

V.(Ed.),ProceedingsoftheSecondInternationalSympo-siumdevotedtoTestsonBitumensandBituminousMaterials,Budapest,September1975.InternationalUnionofTestingandResearchLaboratoriesforMaterialsandStructures,OMKDK-Technoinform,pp.197–209.

Storm,D.A.,Barresi,R.J.,Sheu,E.Y.,1996.Developmentof

solidpropertiesandthermochemistryofasphaltbindersinthe25–65°Ctemperaturerange.EnergyandFuels10,855–864.

Traxler,R.N.,Coombs,C.E.,1937.Developmentofinternal

structureinasphaltswithtime.ProceedingsoftheAmericanSocietyforTestingandMaterials37,549–557,PartII.Traxler,R.N.,Coombs,C.E.,1938.Structureinasphalts.

Indicatedbysolvent-treatedsurfaces.IndustrialandEngi-neeringChemistry30(4),440–443.

Traxler,R.N.,Schweyer,H.E.,1936.Increaseinviscosityof

asphaltswithtime.ProceedingsoftheAmericanSocietyforTestingandMaterials36,544–551,PartII.

VanderPoel,C.,1954.Ageneralsystemdescribingthevisco-elasticpropertiesofbitumensanditsrelationtoroutinetestdata.JournalofAppliedChemistry4,221–236.

Youtcheff,J.S.,Jones,D.R.,1994.Guidelineforasphalt

refinersandsuppliers.ReportSHRP-A-686,StrategicHighwayResearchProgram,Washington,DC,USA.

因篇幅问题不能全部显示,请点此查看更多更全内容