1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观
众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;
⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?
(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)
y(百元)850400350O-1001020x(百人)
2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进
的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)
⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?
126S(千米)C甲DBE乙23Ft(小时)
1
3、教室里放有一台饮水机,饮水机上有两个放水管。课间同学们到饮水机前用茶杯接水。假设接水过程
中水不发生泼洒,每个学声所接的水量是相等的。两个放水管同时打开时,它们的流量相同。放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。饮水机的存水量y(升)与放水时间x(分钟)的函数关系如下图所示:
y(升)18178O212x(分钟)
⑴求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;
⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?
4、 甲、乙两个工程队分别同时开挖两段河渠,所挖
河渠的长度ym与挖掘时间xh之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m时,用了 h. 开挖6h时甲队比乙队多挖了 m;
⑵请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与
图象与信息 ym 60 50 30 O 甲 乙 2 图1 6 xh x之间的函数关系式;
⑶当x为何值时,甲、乙两队在施工过程中所挖河渠
的长度相等?
2
6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日
照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资
以及产值如下表: (单位:千元/吨) 品种 西施舌 对虾
养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x吨
(1)求x的取值范围;
(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?
先期投资 9 4 养殖期间投资 3 10 产值 30 20
7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的
长度,她得到的数据如下表:
19 36 53 70 …… (1)把上表中x,y的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想y与纸环数x(个) 彩纸链长度y(cm) 1 2 3 4 …… x的函数关系,并求出函数关系式;
(2)教室天花板对角线长10m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?
y(cm)90 80 70 (4,70) 60 (3,53) 50 40 (2,36) 30 9、如图,l1表示神风摩托厂一天的销售收入与摩托车销售量之 20 (1,19) 10 间的关系;l2表示摩托厂一天的销售成本与销售量之间的关系。
O 1 2 3 4 5 6 7 (1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;
图3
x(个)
(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)一天的销售量超过多少辆时,工厂才能获利?
3
10、某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时投入
的成本与印数间的相应数据如下:
印数x(册) 5000 成本y(元) 28500 8000 36000 10000 41000 15000 53500 …… …… (1)经过对上表中数据的探究,发现这种读物的投入y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出的x取值范围)。
(2)如果出版社投入成本48000元,那么能印该读物多少册?
11、小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。
(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间; (2)根据图象提供的信息,请你设计一个问题,并给予解答
12、某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生
产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料 5kg,可获利350元.
(1)请问工厂有哪几种生产方案?
(2)选择哪种方案可获利最大,最大利润是多少?
13、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万
元,售价lO万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.
4
需要甲原料 需要乙原料 14、某工厂现有甲种原料226kg,乙种原料250kg,计划利
用这两种原料生产A,B两种产品共40件,生产A,B两种产
一件A种产品 一件B种产品 7kg 3kg 4kg 10kg 品用料情况如下表:
设生产A产品x件,请解答下列问题:
(1)求x的值,并说明有哪几种符合题意的生产方案;
(2)若甲种原料50元/kg,乙种原料40元/kg ,说明(1)中哪种方案较优? .
15、小亮妈妈下岗后开了一家糕点店.现有10.2千克面粉,10.2千克鸡蛋,计划加工一般糕点和精制糕
点两种产品共50盒.已知加工一盒一般糕点需0.3千克面粉和0.1千克鸡蛋;加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.
(1)有哪几种符合题意的加工方案?请你帮助设计出来;
(2)若销售一盒一般糕点和一盒精制糕点的利润分别为1.5元和2元,那么按哪一个方案加工,小亮妈妈可获得最大利润?最大利润是多少?
16、我市某生态果园今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,
甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨. (1)共有几种租车方案?
(2)若甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,请选出最佳方案,此方案运费是多少.
17、双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,
需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。 (1)求A、B两种型号的服装每件分别为多少元?
(2)若销售1件A型服装可获利18元,销售1件B型服装可获得30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售完后,可使总的获得不少于699元,问有几种进货方案?如何进货?
18、为实现沈阳市森林城市建设的目标,在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种
植400株树苗。某树苗公司提供如下信息:
信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等。 信息二:如下表: 树苗 杨树 丁香树 柳树 每棵树苗批发 价格(元) 3 2 P 两年后每棵树苗 对空气的净化指数 0.4 0.1 0.2 设购买杨树、柳树分别为x株、y株。 (1)写出y与x之间的函数关系式(不要求写出自变量的取值范围):
5
(2)当每株柳树的批发价P等于3元时,要使这400株树苗两年后对该住宅小区的空气净化指数不低于90,应该怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元? (3)当每株柳树批发价P(元)与购买数量y(株)之间存在关系P=3-0.005y时,求购买树苗的总费用w(元)与购买杨树数量x(株)之间的函数关系式(不要求写出自变量的取值范围)。
19、某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%。
经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数ykxb 且x时,y5时,y40,x0。 7080 (1)求一次函数的表达式;
(2)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?
20、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合
同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算? (2)每月行驶的路程等于多少时,两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?
21、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时
装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。
(1)求y与x的函数关系式,并求出自变量的取值范围; (2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?
22、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13
元。
(1)写出每月电话费y(元)与通话次数x之间的函数关系式; (2)分别求出月通话50次、100次的电话费;
(3)如果某月的电话费是27.8元,求该月通话的次数
6
23、荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,
这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。
(1)设运输这批货物的总运费为y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;
(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?
24、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50
件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品获总利润为y(元),生产A种产品x件,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?
25、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立
方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)
(1)分别写出用水未超过7立方米和多于7立方米时,y与x之间的函数关系式;
(2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
装同一种苹果,且必须装满,每种苹果不少于2车。
26、辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。按规定每辆车只
(1)设用x辆车装运A种苹果,用y辆车装运B种苹果,根据下表提供的信息求y与x之间的函数关系式,并求x的取值范围;
(2)设此次外销活动的利润为W(百元),求W与x的函数关系式以及最大利润,并安排相应的车辆分配方案。 苹果品种 A B C 每辆汽车运载量 (吨) 每吨苹果获利 (百元)
2.2 6 2.1 8 2 5 32.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C
港,最终达到C港.设甲、乙两船行驶x(h)后,与港的距离分别为y1、y2(km),y1、y2与x的函.B.....数关系如图所示.
(1)填空:A、C两港口间的距离为 km,a ; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
7
y/km 90 甲 乙
30 O 0.5 P a 3 x/h
33.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式 每吨获利(元) 粗加工后销售 1000 精加工后销售 2000 已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? ⑵如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?
35.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油
若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示. y(升)请根据图象回答下列问题:
(1)汽车行驶 小时后加油,中途加油 60 升; 50(2)求加油前油箱剩余油量y与行驶时间t的45函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀
速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.
4030201410
012345678t(小时) 36.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经
了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
8
因篇幅问题不能全部显示,请点此查看更多更全内容