真值表的应用
第一讲(D)概念的定义和划分(比如定义判断的考察)1、什 么是定义 定义是用简明的语词揭示概念对象的木质属性以明确概念内涵 的逻辑方法。例如:半导体就是具有单向导电性的物体。人是制造和 使用生产工具的动物。
定义一般由被定义项、定义项、定义联项三部分组成。上例中的 •半导体”和•人”就是被定义项;“具有单向导电性的物体。”■制造和使 用生产工具的生物。”就是定义项;。是”•就是”为定义联项。2、定义 的方法—属加种差
第一步:确定被定义项校邻近的属。即与被定义项邻近的属概念, 邻近到何种程度,根据需要而定。
第二步:明确种差即指出被定义项与其所在属中其他种概念的本 质区别。公式:被定义项=种差+邻近的属概念。3、定义的规则 和逻辑错误
规则一定义项的外延和被定义项的外延必须是同一关系。否则 犯如下逻辑错误定义过宽定义过窄比如:人是能直立行走的动物。 定义过宽人是精通逻辑学的动物。定义过窄
规则二定义项不得直接或者间接包干被定义项。否则犯如下逻 辑错误同语反复循环定义
比如:生产工具就是生产中使用的工具。同语反复
原因就是引起结果的事件。循环定义规则三定义项中不能使 用比喻或者含糊的语词。否则犯如下逻辑错误以比喻代定义定义 不清
比如:共产党就是红太阳以比喻代定义生命就是内在关系对外 在关系的不断适应定义不清
规则四定义一般采用肯定形式,要求定义项中不用否定概念, 定义联项不得用否定形式。
否则犯如下逻辑错误定义否定
比如:清醒就是非昏迷的状态。定义否定4、什么是划分
概念的划分就是把一个属概念,按照一定的标准(该标准不一定 是概念对象的木质属性)分为若干种概念,以明确概念的外延的逻辑 方法。
划分一般由划分的母项、划分的子项、划分的根据三部分组成。 母项就是被划分的属概念,子项就是从母项中划分出来的种概念。根 据就是把母项划分为子项的依据。
比如:三角形的一个内角是否为90度为标准(根据),三角形(母 项)可以分
为直角三角形、钝角三角形、锐角三角形(子项)。
注意:划分不等于分解。分解是把一个表示对象整体的概念分成 表示该对象组成部分的概念,其中表示对象各个部分的概念不具有表 示对象整体概念的内涵。比如:不能把人划分为头部、四肢、躯干。 5、划分的方法
划分的方法主要有:一次划分、连续划分、二分法。
A、一次划分:根据划分标准仅把母项分成若干子项就划分完毕 的方法。
比如:三角形可以分为直角三角形、钝角三角形、锐角三角 形。
B、 连续划分:一次划分的基础上,把子项在作为母项而继续进 行划分。
比如:教材分为自然科学教材、社会科学教材。自人科学教 材又可以分为,数学教材、化学教材??
C、 二分法:根据某种属性的有无,把母项分成具有矛盾关系的 子项方
法。它不同于一次划分,也不同于连续划分。比如:学生可以 分为男学生和女学生。6、划分的规则和逻辑错误
规则一划分的子项的外延之和必须等于母项的外延。否则犯如 下逻辑错误多出子项划分不全
比如:小说可以分为:古典小说、现代小说、散文、绘画。多出 子项 学生可以分为:研究生、大学生、小学生。划分不全 规则二 每次划分必须根据统一标准进行。
否则就会犯如下逻辑错误 混淆根据(划分标准不一)
比如:国家干部可以分为:男干部、党员干部。混淆标准规则 三每次划分中的子项的外延应为全异关系。否则就会犯如下逻辑错 误子项相容
比如:专科学校分为:高等专科学校、中等专科学校、师范专科 学校。
子项相容
第二讲、简单判断及其演绎推理 第一节判断及其种类
1、 判断的定义:判断是对事物和对象有所断定的思维形式。
任何事物或对象都具有一定的性质,并与其它事物或对象具有某 种关系。事物或对象的性质与关系即为属性。
所谓断定,就是指岀事物或对象具有或不具有某种属性。具有某 种属性是肯定,不具有某种属性是否定。比如:5是自然数。5不 是自然数。
法律逻辑和法律语言办板块举办辩论赛。法律逻辑和法律语言 办板块不举办辩论赛。
判断的基本特征有二:一是有所断定;二是有真假之分。比如: 你好吗?就不是判断。
注意:逻辑学作为形式科学,不研究判断所含具体内容的真假, 而是从思维形式结构的角度研究判断有哪些种类,不同类型判断有什 么逻辑特性(及判断的真假情形)
2、 判断的种类:
根据判断中是否含有模态词,可以把判断分为模态判断和非模态 判断。 非模态判断分为简单判断(包括,性质判断、关系判断);复合 判断(包括联言判断、选言判断、假言判断、负判断、多重复和判断 等)第二节、性质判断一、什么是性质判断
性质判断:是断定思维对象具有或不具有某种性质的简单判断。 (它又叫作直言判断)
任何一个性质判都是由主项、谓项、联项、量项四个部分组成。 主项:表示在性质判断中所断定的对象的概念。(用S表示)
谓项:表示在性质判断中断定的对象所具有或不具有的性质的概 念。(用P表示)
联项:表示性质判断中主项和谓项之间的联系的概念。
量项:表示性质判断中主项数量的概念。量项三种:全称量项、 特称
量项、单称量项
二、性质判断的种类
1、按照质(联项)的不同,性质判断分为肯定判断和否定判断。肯 定
判断:断定对象具有某种性质的判断。逻辑形式:S是P。否定判 断:断定对象不具有某种性质的判断。逻辑形式:S不是P。2、按 照量(量项)的不同,性质判断分为单称判断、特称判断和全称判断。 单称判断是断定某类对象中的某一单个对象具有(或不具有)某种性质 的判断。逻辑形式:某个S是(或不是)P。
特称判断是断定某类对象中至少有一个对象具有(或不具有)某种 性质的判断。逻辑形式:有S是(或不是)P。
全称判断是断定某类对象中的全部对象都具有(或不具有)某种性 质的判断。逻辑形式:所有S是(或不是)P。
3、按照质和量的结合,性质判断可分为如下六种形式
(1) 单称肯定判断:它是断定某一单个对象具有某种性质的判断。
逻辑形式:某个S是P。
(2) 单称否定判断:它是断定某一单个对象不具有某种性质的判
断。 逻辑形式:某个S不是P。
(3) 特称肯定判断:它是断定某类对象中到少有一个对象具有某种
性质的判断。逻辑形式:有S是P。
(4) 特称否定判断:它是断定某类对象中到少有一个对象不具有某
种性质的判断。逻辑形式:有S不是P。
(5) 全称肯定判断:它是断定某类对象中的全部对象都具有某种性 质
的判断。逻辑形式:所有的S是P。
(6) 全称否定判断:它是断定某类对象中的全部对象都不具有某种 性
质的判断。逻辑形式:所有的S不是P。
以上性质判断的六种逻辑形式,可以用符号分别表示如下:(老师 提醒:此部分非常重要!)
⑴单称肯定判断:用®P”表示,又可写成W (2)单称否定判断:
用°SeP”表示,又可写成©⑶特称肯定判断:用°SIP”表示,又可写成 丁
(4)特称否定判断:用“SOP”表示,又可写成9”(5)全称肯定判断:
用°SAP”表示,又可写成(6)全称否定判断:用“SEP”表示,又可写 成。
E”
以后,涉用的内容大都为*7\\”£“1”“0”因为某此情况下“A”与 与E 三、 性质判断的真假
性质判断主项的反映的对象是事物中一个类,谓项所反映的对象 的性质也是事物中的一个类,所以,在性质判断中,主项S与谓项P 实质上反映了类与类关系。
A、E、I、0四种判断的真假情况列表
四、 同一素材A、E、I、0之间的真假关系
同一素材A、E、I、0之间的真假关系,指的是具有相同主项和 谓项的A、E、I、0四种判断之间所存在的一种真假相互制约的关系, 它又叫做同一素材A、E、I、0间的对当关系。(一)矛盾关系
A与0、E、I之间是矛盾关系。
判断矛盾关系特点:二者既不能同真,也不能同假。即一个真, 则另一个假,则另一个必真。(二)反对关系
A与E之间是反对关系。
判断反对关系特点:二者不能同真,但可以同假。即一个真,则 另一个必假,一个假,则另一个真假不定。(三)下反对关系
丨与0之间是下反对关系。
判断下反对关系的特点是:二者不能同假,但可以同真。即一个 假,则另一个必真;一个真,则另一个真假不定。(四)差等关系
A与I、E、0之间是差等关系。
判断差等关系的特点是:在同质条件下,全称判断真,则特称判 断必真;全称判断假,则特称判断真假不定。反之,特称判断假,则 全称判断必假;特称判断真,则全称判真假不定。
参考图例 逻辑方阵
因篇幅问题不能全部显示,请点此查看更多更全内容