您的当前位置:首页正文

python dropna怎么用

2024-07-17 来源:年旅网

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

python学习网,大量的免费,欢迎在线学习!

使用dropna使得滤除缺失数据更加得心应手。

相关推荐:《》

dropna常用参数:

# DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

主要的2个参数:

#axis=0:删除包含缺失值(NaN)的行

#axis=1:删除包含缺失值(NaN)的列

# how=‘any’:要有缺失值(NaN)出现删除

# how=‘all’:所有的值都缺失(NaN)才删除

这两个要配合使用才好。

该函数主要用于滤除缺失数据。如果是Series,则返回一个仅含非空数据和索引值的Series,默认丢弃含有缺失值的行。

xx.dropna()

对于DataFrame:

data.dropna(how = 'all')    # 传入这个参数后将只丢弃全为缺失值的那些行
data.dropna(axis = 1)       # 丢弃有缺失值的列(一般不会这么做,这样会删掉一个特征)
data.dropna(axis=1,how="all")   # 丢弃全为缺失值的那些列
data.dropna(axis=0,subset = ["Age", "Sex"])   # 丢弃‘Age’和‘Sex’这两列中有缺失值的行
显示全文