有网友碰到这样的问题“a>b>c>0求证:a^a*b^b*c^c>(abc)^((a+b+C)/3)”。小编为您整理了以下解决方案,希望对您有帮助:
解决方案1:
对左边取对数:
lg(a^ab^bc^c)=alga+blgb+clgc
a>b>c>0
alga+blgb+clgc>algb+blgc+clga
alga+blgb+clgc>algc+blga+clgb
alga+blgb+clgc=alga+blgb+clgc
上面三式相加:
3lg(a^ab^bc^c)
=3(alga+blgb+clgc)
=(algb+blgc+clga)+(algc+blga+clgb)+(alga+blgb+clgc)
=(a+b+c)(lga+lgb+lgc)
=lg(abc)^{a+b+c}
即a^a*b^b*c^c>(abc)^((a+b+C)/3)